2024屆安徽舒城桃溪中學高一數(shù)學第二學期期末檢測模擬試題含解析_第1頁
2024屆安徽舒城桃溪中學高一數(shù)學第二學期期末檢測模擬試題含解析_第2頁
2024屆安徽舒城桃溪中學高一數(shù)學第二學期期末檢測模擬試題含解析_第3頁
2024屆安徽舒城桃溪中學高一數(shù)學第二學期期末檢測模擬試題含解析_第4頁
2024屆安徽舒城桃溪中學高一數(shù)學第二學期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆安徽舒城桃溪中學高一數(shù)學第二學期期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.計算機中常用十六進制是逢16進1的計數(shù)制,采用數(shù)字0~9和字母A~F共16個計數(shù)符號,這些符號與十進制的數(shù)的對應關系如下表:16進制0123456789ABCDEF10進制0123456789101112131415現(xiàn)在,將十進制整數(shù)2019化成16進制數(shù)為()A.7E3 B.7F3 C.8E3 D.8F32.執(zhí)行如圖所示的程序框圖,若輸入,則輸出()A.13 B.15 C.40 D.463.若且,則下列不等式成立的是()A. B. C. D.4.已知tan(α+π5A.1B.-57C.5.為比較甲、乙兩名籃球運動員的近期競技狀態(tài),選取這兩名球員最近五場比賽的得分制成如圖所示的莖葉圖,有以下結論:①甲最近五場比賽得分的中位數(shù)高于乙最近五場比賽得分的中位數(shù);②甲最近五場比賽得分平均數(shù)低于乙最近五場比賽得分的平均數(shù);③從最近五場比賽的得分看,乙比甲更穩(wěn)定;④從最近五場比賽的得分看,甲比乙更穩(wěn)定.其中所有正確結論的編號為:()A.①③ B.①④ C.②③ D.②④6.在△中,點是上一點,且,是中點,與交點為,又,則的值為()A. B. C. D.7.若函數(shù)在一個周期內的圖象如圖所示,且在軸上的截距為,分別是這段圖象的最高點和最低點,則在方向上的投影為()A. B. C. D.8.如圖,在圓內隨機撒一把豆子,統(tǒng)計落在其內接正方形中的豆子數(shù)目,若豆子總數(shù)為n,落在正方形內的豆子數(shù)為m,則圓周率π的估算值是()A.nmB.2nmC.3n9.圓與圓的位置關系為()A.內切 B.相交 C.外切 D.相離10.在中,角,,所對的邊分別為,,,若,,則等于()A.1 B.2 C. D.4二、填空題:本大題共6小題,每小題5分,共30分。11.若是方程的解,其中,則________.12.有6根細木棒,其中較長的兩根分別為,,其余4根均為,用它們搭成三棱錐,則其中兩條較長的棱所在的直線所成的角的余弦值為.13.已知向量,,且,點在圓上,則等于.14.已知變量,滿足,則的最小值為________.15.正方形和內接于同一個直角三角形ABC中,如圖所示,設,若兩正方形面積分別為=441,=440,則=______16.設是公比為的等比數(shù)列,,令,若數(shù)列有連續(xù)四項在集合中,則=.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列和中,數(shù)列的前n項和為,若點在函數(shù)的圖象上,點在函數(shù)的圖象上.設數(shù)列.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和;(3)求數(shù)列的最大值.18.已知向量(1)求函數(shù)的單調遞減區(qū)間;(2)在中,,若,求的周長.19.已知向量.(1)若向量,且,求的坐標;(2)若向量與互相垂直,求實數(shù)的值.20.已知集合,其中,由中的元素構成兩個相應的集合:,.其中是有序數(shù)對,集合和中的元素個數(shù)分別為和.若對于任意的,總有,則稱集合具有性質.(Ⅰ)檢驗集合與是否具有性質并對其中具有性質的集合,寫出相應的集合和.(Ⅱ)對任何具有性質的集合,證明.(Ⅲ)判斷和的大小關系,并證明你的結論.21.已知,函數(shù)(其中),且圖象在軸右側的第一個最高點的橫坐標為,并過點.(1)求函數(shù)的解析式;(2)求函數(shù)的單調增區(qū)間.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】

通過豎式除法,用2019除以16,取其余數(shù),再用商除以16,取其余數(shù),直至商為零,將余數(shù)逆著寫出來即可.【題目詳解】用2019除以16,得余數(shù)為3,商為126;用126除以16,得余數(shù)為14,商為7;用7除以16,得余數(shù)為7,商為0;將余數(shù)3,14,7逆著寫,即可得7E3.故選:A.【題目點撥】本題考查進制的轉化,只需按照流程執(zhí)行即可.2、A【解題分析】

模擬程序運行即可.【題目詳解】程序運行循環(huán)時,變量值為,不滿足;,不滿足;,滿足,結束循環(huán),輸出.故選A.【題目點撥】本題考查程序框圖,考查循環(huán)結構.解題時可模擬程序運行,觀察變量值的變化,判斷是否符合循環(huán)條件即可.3、D【解題分析】

利用不等式的性質對四個選項逐一判斷.【題目詳解】選項A:,符合,但不等式不成立,故本選項是錯誤的;選項B:當符合已知條件,但零沒有倒數(shù),故不成立,故本選項是錯誤的;選項C:當時,不成立,故本選項是錯誤的;選項D:因為,所以根據(jù)不等式的性質,由能推出,故本選項是正確的,因此本題選D.【題目點撥】本題考查了不等式的性質,結合不等式的性質,舉特例是解決這類問題的常見方法.4、D【解題分析】∵α-β+π=(α+π∴tan=2+3tan(α-β)=5、C【解題分析】

根據(jù)中位數(shù),平均數(shù),方差的概念計算比較可得.【題目詳解】甲的中位數(shù)為29,乙的中位數(shù)為30,故①不正確;甲的平均數(shù)為29,乙的平均數(shù)為30,故②正確;從比分來看,乙的高分集中度比甲的高分集中度高,故③正確,④不正確.故選C.【題目點撥】本題考查了莖葉圖,屬基礎題.平均數(shù)即為幾個數(shù)加到一起除以數(shù)據(jù)的個數(shù)得到的結果.6、D【解題分析】試題分析:因為三點共線,所以可設,又,所以,,將它們代入,即有,由于不共線,從而有,解得,故選擇D.考點:向量的基本運算及向量共線基本定理.7、D【解題分析】

根據(jù)圖象求出函數(shù)的解析式,然后求出點的坐標,進而可得所求結果.【題目詳解】根據(jù)函數(shù)在一個周期內的圖象,可得,∴.再根據(jù)五點法作圖可得,∴,∴函數(shù)的解析式為.∵該函數(shù)在y軸上的截距為,∴,∴,故函數(shù)的解析式為.∴,∴,又,∴向量在方向上的投影為.故選D.【題目點撥】解答本題的關鍵有兩個:一是正確求出函數(shù)的解析式,進而得到兩點的坐標,此處要靈活運用“五點法”求出的值;二是注意一個向量在另一個向量方向上的投影的概念,屬于基礎題.8、B【解題分析】試題分析:設正方形的邊長為2.則圓的半徑為2,根據(jù)幾何概型的概率公式可以得到mn=4考點:幾何概型.【方法點睛】本題題主要考查“體積型”的幾何概型,屬于中檔題.解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與體積有關的幾何概型問題關鍵是計算問題題的總體積(總空間)以及事件的體積(事件空間);幾何概型問題還有以下幾點容易造成失分,在備考時要高度關注:(1)不能正確判斷事件是古典概型還是幾何概型導致錯誤;(2)基本事件對應的區(qū)域測度把握不準導致錯誤;(3)利用幾何概型的概率公式時,忽視驗證事件是否等可能性導致錯誤.9、B【解題分析】試題分析:兩圓的圓心距為,半徑分別為,,所以兩圓相交.故選C.考點:圓與圓的位置關系.10、D【解題分析】

直接利用正弦定理得到,帶入化簡得到答案.【題目詳解】正弦定理:即:故選D【題目點撥】本題考查了正弦定理,意在考查學生的計算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、或【解題分析】

將代入方程,化簡結合余弦函數(shù)的性質即可求解.【題目詳解】由題意可得:,即所以或又所以或故答案為:或【題目點撥】本題主要考查了三角函數(shù)求值問題,屬于基礎題.12、【解題分析】

分較長的兩條棱所在直線相交,和較長的兩條棱所在直線異面兩種情況討論,結合三棱錐的結構特征,即可求出結果.【題目詳解】當較長的兩條棱所在直線相交時,如圖所示:不妨設,,,所以較長的兩條棱所在直線所成角為,由勾股定理可得:,所以,所以此時較長的兩條棱所在直線所成角的余弦值為;當較長的兩條棱所在直線異面時,不妨設,,則,取CD的中點為O,連接OA,OB,所以CD⊥OA,CD⊥OB,而,所以OA+OB<AB,不能構成三角形。所以此情況不存在。故答案為:.【題目點撥】本題主要考查異面直線所成的角,熟記異面直線所成角的概念,以及三棱錐的結構特征即可,屬于??碱}型.13、【解題分析】試題分析:因為且在圓上,所以,解得,所以.考點:向量運算.【思路點晴】平面向量的數(shù)量積計算問題,往往有兩種形式,一是利用數(shù)量積的定義式,二是利用數(shù)量積的坐標運算公式,涉及幾何圖形的問題,先建立適當?shù)钠矫嬷苯亲鴺讼?,可起到化繁為簡的妙用.利用向量夾角公式、模公式及向量垂直的充要條件,可將有關角度問題、線段長問題及垂直問題轉化為向量的數(shù)量積來解決.列出方程組求解未知數(shù).14、0【解題分析】

畫出可行域,分析目標函數(shù)得,當在y軸上截距最小時,即可求出的最小值.【題目詳解】作出可行域如圖:聯(lián)立得化目標函數(shù)為,由圖可知,當直線過點時,在y軸上的截距最小,有最小值為,故填.【題目點撥】本題主要考查了簡單的線性規(guī)劃,屬于中檔題.15、【解題分析】

首先根據(jù)在正方形S1和S2內,S1=441,S2=440,分別求出兩個正方形的邊長,然后分別表示出AF、FC、AM、MC的長度,最后根據(jù)AF+FC=AM+MC,列出關于α的三角函數(shù)等式,求出sin2α的值即可.【題目詳解】因為S1=441,S2=440,所以FD21,MQ=MN,因為AC=AF+FC2121,AC=AM+MCMNcosαcosα,所以:21cosα,整理,可得:(sinαcosα+1)=21(sinα+cosα),兩邊平方,可得110sin22α﹣sin2α﹣1=0,解得sin2α或sin2α(舍去),故sin2α.故答案為:.【題目點撥】本題主要考查了三角函數(shù)的求值問題,考查了正方形、直角三角形的性質,屬于中檔題,解答此題的關鍵是分別表示出AF、FC、AM、MC的長度,最后根據(jù)AF+FC=AM+MC,列出關于α的三角函數(shù)等式.16、【解題分析】

考查等價轉化能力和分析問題的能力,等比數(shù)列的通項,有連續(xù)四項在集合,四項成等比數(shù)列,公比為,=-9.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解題分析】

(1)先根據(jù)題設知,再利用求得,驗證符合,最后答案可得.

(2)由題設可知,把代入,然后用錯位相減法求和;(3)計算,判斷其大于零時的范圍,可得數(shù)列取最大值時的項數(shù),進而可得最大值..【題目詳解】解:(1)由已知得:,∵當時,,又當時,符合上式.(2)由已知得:①②②-①可得:(3)令,得:,又且,即為最大,故最大值為.【題目點撥】本題主要考查了數(shù)列的遞推式解決數(shù)列的通項公式和求和問題,考查數(shù)列最大項的求解,是中檔題.18、(1);(2)【解題分析】

(1)根據(jù)向量的數(shù)量積公式、二倍角公式及輔助角公式將化簡為,然后利用三角函數(shù)的性質,即可求得的單調減區(qū)間;(2)由(1)及可求得,由可得,再結合余弦定理即可求得,進而可得的周長.【題目詳解】解:(1)所以函數(shù)的單調遞減區(qū)間為:(2),,又因在中,,,設的三個內角所對的邊分別為,又,且,,則,所以的周長為.【題目點撥】本題考查平面向量的數(shù)量積公式,三角函數(shù)的二倍角公式、輔助角公式和三角函數(shù)的性質,以及利用正弦定理、余弦定理解三角形,考查理解辨析能力及求解運算能力,屬于中檔題.19、(1)或(2)【解題分析】

(1)因為,所以可以設求出坐標,根據(jù)模長,可以得到參數(shù)的方程.(2)由于已知條件可以計算出與坐標(含有參數(shù))而兩向量垂直,可以得到關于的方程,完成本題.【題目詳解】(1)法一:設,則,所以解得所以或法二:設,因為,,所以,因為,所以解得或,所以或(2)因為向量與互相垂直所以,即而,,所以,因此,解得【題目點撥】考查了向量的線性表示,引入?yún)?shù),只要我們能建立起引入?yún)?shù)的方程,則就能計算出所求參數(shù)值,從而完成本題.20、(Ⅰ)集合不具有性質,集合具有性質,相應集合,,集合,(Ⅱ)見解析(Ⅲ)【解題分析】解:集合不具有性質.集合具有性質,其相應的集合和是,.(II)證明:首先,由中元素構成的有序數(shù)對共有個.因為,所以;又因為當時,時,,所以當時,.從而,集合中元素的個數(shù)最多為,即.(III)解:,證明如下:(1)對于,根據(jù)定義,,,且,從而.如果與是的不同元素,那么與中至少有一個不成立,從而與中也至少有一個不成立.故與也是的不同元素.可見,中元素的個數(shù)不多于中元素的個數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論