版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省連云港市數(shù)學高一第二學期期末質量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等比數(shù)列{an}的前n項和為Sn,若2Sn=an+1﹣1(n∈N*),則首項a1為()A.1 B.2 C.3 D.42.2019年是新中國成立70周年,渦陽縣某中學為慶祝新中國成立70周年,舉辦了“我和我的祖國”演講比賽,某選手的6個得分去掉一個最高分,去掉一個最低分,4個剩余分數(shù)的平均分為91.現(xiàn)場制作的6個分數(shù)的莖葉圖后來有1個數(shù)據(jù)模糊,無法辨認,在圖中以表示,則4個剩余分數(shù)的方差為()A.1 B. C.4 D.63.設向量=(2,4)與向量=(x,6)共線,則實數(shù)x=()A.2 B.3 C.4 D.64.用3種不同顏色給2個矩形隨機涂色,每個矩形涂且只涂種顏色,則2個矩形顏色不同的概率為()A.13 B.12 C.25.在等差數(shù)列中,若,則()A.45 B.75 C.180 D.3206.如圖是某個正方體的平面展開圖,,是兩條側面對角線,則在該正方體中,與()A.互相平行 B.異面且互相垂直 C.異面且夾角為 D.相交且夾角為7.已知點,和向量,若,則實數(shù)的值為()A. B. C. D.8.在中,,點是內(包括邊界)的一動點,且,則的最大值是()A. B. C. D.9.在面積為S的平行四邊形ABCD內任取一點P,則三角形PBD的面積大于的概率為()A. B. C. D.10.在△ABC中,角A,B,C所對的邊分別為a,b,c,若a﹣b=ccosB﹣ccosA,則△ABC的形狀為()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰三角形或直角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最小正周期是____.12.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機選一匹進行一場比賽,則田忌的馬獲勝的概率為__________.13.已知為所在平面內一點,且,則_____14.函數(shù)的單調遞增區(qū)間為______.15.用數(shù)學歸納法證明不等式“(且)”的過程中,第一步:當時,不等式左邊應等于__________。16.已知向量,.若向量與垂直,則________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在四邊形中,已知,,,,設.(1)求(用表示);(2)求的最小值.(結果精確到米)18.如圖,在中,,為內一點,.(1)若,求;(2)若,求的面積.19.如圖,在三棱柱中,是邊長為4的正三角形,側面是矩形,分別是線段的中點.(1)求證:平面;(2)若平面平面,,求三棱錐的體積.20.已知無窮數(shù)列,是公差分別為、的等差數(shù)列,記(),其中表示不超過的最大整數(shù),即.(1)直接寫出數(shù)列,的前4項,使得數(shù)列的前4項為:2,3,4,5;(2)若,求數(shù)列的前項的和;(3)求證:數(shù)列為等差數(shù)列的必要非充分條件是.21.已知E、F、G、H為空間四邊形ABCD的邊AB、BC、CD、DA上的點,且EH∥FG.求證:EH∥BD.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】
等比數(shù)列的公比設為,分別令,結合等比數(shù)列的定義和通項公式,解方程可得所求首項.【題目詳解】等比數(shù)列的公比設為,由,令,可得,,兩式相減可得,即,又所以.故選:A.【題目點撥】本題考查數(shù)列的遞推式的運用,等比數(shù)列的定義和通項公式,考查方程思想和運算能力,屬于基礎題.2、B【解題分析】
由題意得x≥3,由此能求出4個剩余數(shù)據(jù)的方差.【題目詳解】由題意得x≥3,則4個剩余分數(shù)的方差為:s2[(93﹣91)2+(90﹣91)2+(90﹣91)2+(91﹣91)2].故選B.【題目點撥】本題考查了方差的計算問題,也考查了莖葉圖的性質、平均數(shù)、方差等基礎知識,是基礎題.3、B【解題分析】由向量平行的性質,有2∶4=x∶6,解得x=3,選B考點:本題考查平面向量的坐標表示,向量共線的性質,考查基本的運算能力.4、C【解題分析】
由古典概型及概率計算公式得2個矩形顏色不同的概率為69【題目詳解】用3種不同顏色給2個矩形隨機涂色,每個矩形涂且只涂1種顏色,共32則2個矩形顏色不同共A3即2個矩形顏色不同的概率為69故選:C.【題目點撥】本題考查了古典概型及概率計算公式,屬于基礎題.5、C【解題分析】試題分析:因為數(shù)列為等差數(shù)列,且,所以,,從而,所以,而,所以,故選C.考點:等差數(shù)列的性質.6、D【解題分析】
先將平面展開圖還原成正方體,再判斷求解.【題目詳解】將平面展開圖還原成正方體如圖所示,則B,C兩點重合,所以與相交,連接,則為正三角形,所以與的夾角為.故選D.【題目點撥】本題主要考查空間直線的位置關系,意在考查學生對該知識的理解掌握水平和分析推理能力.7、B【解題分析】
先求出,再利用共線向量的坐標表示求實數(shù)的值.【題目詳解】由題得,因為,所以.故選:B【題目點撥】本題主要考查向量的坐標運算和向量共線的坐標表示,意在考查學生對這些知識的理解掌握水平,屬于基礎題.8、B【解題分析】
根據(jù)分析得出點的軌跡為線段,結合圖形即可得到的最大值.【題目詳解】如圖:取,,,點是內(包括邊界)的一動點,且,根據(jù)平行四邊形法則,點的軌跡為線段,則的最大值是,在中,,,,,故選:B【題目點撥】此題考查利用向量方法解決平面幾何中的線段長度最值問題,數(shù)形結合處理可以避免純粹的計算,降低難度.9、A【解題分析】
轉化條件求出滿足要求的P點的范圍,求出面積比即可得解.【題目詳解】如圖,設P到BD距離為h,A到BD距離為H,則,,滿足條件的點在和中,所求概率.故選:A.【題目點撥】本題考查了幾何概型的概率計算,屬于基礎題.10、D【解題分析】
用正弦定理化邊為角,再由誘導公式和兩角和的正弦公式化簡變形可得.【題目詳解】∵a﹣b=ccosB﹣ccosA,∴,∴,∴,∴或,∴或,故選:D.【題目點撥】本題考查正弦定理,考查三角形形狀的判斷.解題關鍵是誘導公式的應用.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
將三角函數(shù)化簡為標準形式,再利用周期公式得到答案.【題目詳解】由于所以【題目點撥】本題考查了三角函數(shù)的化簡,周期公式,屬于簡單題.12、.【解題分析】分析:由題意結合古典概型計算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對齊王的下等馬,田忌的上等馬對齊王的下等馬,田忌的上等馬對齊王的中等馬,結合古典概型公式可得,田忌的馬獲勝的概率為.點睛:有關古典概型的概率問題,關鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時,用列舉法把所有基本事件一一列出時,要做到不重復、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數(shù)原理的正確使用.13、【解題分析】
將向量進行等量代換,然后做出對應圖形,利用平面向量基本定理進行表示即可.【題目詳解】解:設,則根據(jù)題意可得,,如圖所示,作,垂足分別為,則又,,故答案為.【題目點撥】本題考查了平面向量基本定理及其意義,兩個向量的加減法及其幾何意義,屬于中檔題.14、【解題分析】
令,解得的范圍即為所求的單調區(qū)間.【題目詳解】令,,解得:,的單調遞增區(qū)間為故答案為:【題目點撥】本題考查正弦型函數(shù)單調區(qū)間的求解問題,關鍵是能夠采用整體對應的方式,結合正弦函數(shù)的單調區(qū)間來進行求解.15、【解題分析】
用數(shù)學歸納法證明不等式(且),第一步,即時,分母從3到6,列出式子,得到答案.【題目詳解】用數(shù)學歸納法證明不等式(且),第一步,時,左邊式子中每項的分母從3開始增大至6,所以應是.即為答案.【題目點撥】本題考查數(shù)學歸納法的基本步驟,屬于簡單題.16、7【解題分析】
由與垂直,則數(shù)量積為0,求出對應的坐標,計算即可.【題目詳解】,,,又與垂直,故,解得,解得.故答案為:7.【題目點撥】本題考查通過向量數(shù)量積求參數(shù)的值.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)米【解題分析】
(1)在中,由正弦定理,求得,再在中,利用正弦定理,即可求得的表達式;(2)在中,由正弦定理,求得,進而可得到,利用三角函數(shù)的性質,即可求解.【題目詳解】(1)由題意,在中,,由正弦定理,可得,即,在中,,由正弦定理,可得,即,(2)在中,由正弦定理,可得,即所以因為,所以所以當時,取得最小值最小值約為米.【題目點撥】本題主要考查了正弦定理、余弦定理的應用,其中利用正弦、余弦定理可以很好地解決三角形的邊角關系,熟練掌握定理、合理運用是解本題的關鍵.通常當涉及兩邊及其中一邊的對角或兩角及其中一角對邊時,運用正弦定理求解;當涉及三邊或兩邊及其夾角時,運用余弦定理求解.18、(1);(2).【解題分析】
(1)求出,,中由余弦定理即可求得;(2)設,利用正弦定理表示出,求得,利用面積公式即可得解.【題目詳解】(1)在中,,為內一點,,,所以,中,由余弦定理得:所以中,由余弦定理得:;(2),設,在中,,在中,由正弦定理,即,,所以,的面積.【題目點撥】此題考查解三角形,對正余弦定理的綜合使用,涉及兩角差的正弦公式以及同角三角函數(shù)關系的使用,綜合性較強.19、(1)見解析(2)【解題分析】
(1)取中點為,連接,由中位線定理證得,即證得平行四邊形,于是有,這樣就證得線面平行;(2)由等體積法變換后可計算.【題目詳解】證明:(1)取中點為,連接,是平行四邊形,平面,平面,∴平面解:(2)是線段中點,則【題目點撥】本題考查線面平行的判定,考查棱錐的體積.線面平行的證明關鍵是找到線線平行,而棱錐的體積常常用等積變換,轉化頂點與底.20、(1)的前4項為1,2,3,4,的前4項為1,1,1,1;(2);(3)證明見解析【解題分析】
(1)根據(jù)定義,選擇,的前4項,盡量選用整數(shù)計算方便;(2)分別考慮,的前項的規(guī)律,然后根據(jù)計算的運算規(guī)律計算;(3)根據(jù)必要不充分條件的推出情況去證明即可.【題目詳解】(1)由的前4項為:2,3,4,5,選、的前項為正整數(shù):的前4項為1,2,3,4,的前4項為1,1,1,1;(2)將的前項列舉出:;將的前項列舉出:;則;(3)充分性:取,此時,將的前項列舉出:,將前項列出:,此時的前項為:,顯然不是等差數(shù)列,充分性不滿足;必要性:設
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度新能源儲能項目農(nóng)民工勞務合同規(guī)范4篇
- 二零二五版年薪制勞動合同:大數(shù)據(jù)分析行業(yè)專家協(xié)議4篇
- 2025年度農(nóng)行房貸利率調整專項合同書2篇
- 二零二五白蟻滅治與老舊建筑改造服務合同3篇
- 二零二五年度建筑工程合同履行補充協(xié)議范本3篇
- 個人承包旅游景區(qū)開發(fā)與經(jīng)營合同(2024版)3篇
- 二零二五年度節(jié)能環(huán)保門窗定制采購合同2篇
- 二手住宅買賣合同(2024版)范例2篇
- 二零二五版木托盤租賃與物流信息化建設合同4篇
- 管理決策知到智慧樹章節(jié)測試課后答案2024年秋山西財經(jīng)大學
- 飛鼠養(yǎng)殖技術指導
- 壞死性筋膜炎
- 2024輸血相關知識培訓
- 整式的加減單元測試題6套
- 股權架構完整
- 山東省泰安市2022年初中學業(yè)水平考試生物試題
- 注塑部質量控制標準全套
- 人教A版高中數(shù)學選擇性必修第一冊第二章直線和圓的方程-經(jīng)典例題及配套練習題含答案解析
- 銀行網(wǎng)點服務禮儀標準培訓課件
- 二年級下冊數(shù)學教案 -《數(shù)一數(shù)(二)》 北師大版
- 晶體三極管資料
評論
0/150
提交評論