版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆上海市四中高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.甲、乙兩隊準(zhǔn)備進行一場籃球賽,根據(jù)以往的經(jīng)驗甲隊獲勝的概率是,兩隊打平的概率是,則這次比賽乙隊不輸?shù)母怕适牵ǎ〢.- B. C. D.2.一個不透明袋中裝有大小?質(zhì)地完成相同的四個球,四個球上分別標(biāo)有數(shù)字2,3,4,6,現(xiàn)從中隨機選取三個球,則所選三個球上的數(shù)字能構(gòu)成等差數(shù)列(如:??成等差數(shù)列,滿足)的概率是()A. B. C. D.3.甲、乙兩位同學(xué)在高一年級的5次考試中,數(shù)學(xué)成績統(tǒng)計如莖葉圖所示,若甲、乙兩人的平均成績分別是,則下列敘述正確的是()A.,乙比甲成績穩(wěn)定B.,甲比乙成績穩(wěn)定C.,乙比甲成績穩(wěn)定D.,甲比乙成績穩(wěn)定4.設(shè)向量,若,則實數(shù)的值為()A.1 B.2 C.3 D.45.某程序框圖如圖所示,則該程序運行后輸出的值是()A. B. C. D.6.已知點,,則直線的斜率是()A. B. C.5 D.17.在中,內(nèi)角,,的對邊分別為,,,且,,為的面積,則的最大值為()A.1 B.2 C. D.8.已知點,,直線的方程為,且與線段相交,則直線的斜率的取值范圍為()A. B. C. D.9.是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角10.若,,則方程有實數(shù)根的概率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,正方體ABCD﹣A1B1C1D1的棱長為1,M為B1C1中點,連接A1B,D1M,則異面直線A1B和D1M所成角的余弦值為________________________.12.等比數(shù)列的首項為,公比為,記,則數(shù)列的最大項是第___________項.13.?dāng)?shù)列滿足,,,則數(shù)列的通項公式______.14.對任意實數(shù),不等式恒成立,則實數(shù)的取值范圍是____.15.若數(shù)列滿足,且對于任意的,都有,則___;數(shù)列前10項的和____.16.已知等差數(shù)列,,,,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知集合,數(shù)列的首項,且當(dāng)時,點,數(shù)列滿足.(1)試判斷數(shù)列是否是等差數(shù)列,并說明理由;(2)若,求的值.18.在正方體中.(1)求證:;(2)是中點時,求直線與面所成角.19.已知函數(shù),.(1)求函數(shù)在上的單調(diào)遞增區(qū)間;(2)在中,內(nèi)角、、所對邊的長分別是,若,,,求的面積的值.20.如圖,是邊長為2的正三角形.若,平面,平面平面,,且.(1)求證:平面;(2)求證:平面平面.21.某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求圖中的值;(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均分,眾數(shù),中位數(shù);(3)若這100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)()與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)()之比如下表所示,求數(shù)學(xué)成績在[50,90)之外的人數(shù).分?jǐn)?shù)段[50,60)[60,70)[70,80)[80,90)1:12:13:44:5
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】
因為“甲隊獲勝”與“乙隊不輸”是對立事件,對立事件的概率之和為1,進而即可求出結(jié)果.【題目詳解】由題意,“甲隊獲勝”與“乙隊不輸”是對立事件,因為甲隊獲勝的概率是,所以,這次比賽乙隊不輸?shù)母怕适?故選C【題目點撥】本題主要考查對立事件的概率問題,熟記對立事件的性質(zhì)即可,屬于??碱}型.2、B【解題分析】
用列舉法寫出所有基本事件,確定成等差數(shù)列含有的基本事件,計數(shù)后可得概率.【題目詳解】任取3球,結(jié)果有234,236,246,346共4種,其中234,246是成等差數(shù)列的2個基本事件,∴所求概率為.故選:B.【題目點撥】本題考查古典概型,解題時可用列舉法列出所有的基本事件.3、C【解題分析】甲的平均成績,甲的成績的方差;乙的平均成績,乙的成績的方差.∴,乙比甲成績穩(wěn)定.故選C.4、B【解題分析】
首先求出的坐標(biāo),再根據(jù)平面向量共線定理解答.【題目詳解】解:,因為,所以,解得.故選:【題目點撥】本題考查平面向量共線定理的應(yīng)用,屬于基礎(chǔ)題.5、D【解題分析】
由題意首先確定流程圖的功能,然后結(jié)合三角函數(shù)的性質(zhì)求解所要輸出的結(jié)果即開即可.【題目詳解】根據(jù)程序框圖知,該算法的目標(biāo)是計算和式:.又因為,注意到,故:.故選:D.【題目點撥】識別、運行程序框圖和完善程序框圖的思路:(1)要明確程序框圖的順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu).(2)要識別、運行程序框圖,理解框圖所解決的實際問題.(3)按照題目的要求完成解答并驗證.6、D【解題分析】
根據(jù)直線的斜率公式,準(zhǔn)確計算,即可求解,得到答案.【題目詳解】由題意,根據(jù)直線的斜率公式,可得直線的斜率,故選D.【題目點撥】本題主要考查了直線的斜率公式的應(yīng)用,其中解答中熟記直線的斜率公式,準(zhǔn)確計算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.7、C【解題分析】
先由正弦定理,將化為,結(jié)合余弦定理,求出,再結(jié)合正弦定理與三角形面積公式,可得,化簡整理,即可得出結(jié)果.【題目詳解】因為,所以可化為,即,可得,所以.又由正弦定理得,,所以,當(dāng)且僅當(dāng)時,取得最大值.故選C【題目點撥】本題主要考查解三角形,熟記正弦定理與余弦定理即可,屬于常考題型.8、A【解題分析】
直線過定點,利用直線的斜率公式分別計算出直線,和的斜率,根據(jù)斜率的單調(diào)性即可求斜率的取值范圍.【題目詳解】解:直線整理為即可知道直線過定點,作出直線和點對應(yīng)的圖象如圖:,,,,,要使直線與線段相交,則直線的斜率滿足或,或即直線的斜率的取值范圍是,故選.【題目點撥】本題考查直線斜率的求法,利用數(shù)形結(jié)合確定直線斜率的取值范圍,屬于基礎(chǔ)題.9、C【解題分析】
本題首先要明確平面直角坐標(biāo)系中每一象限所對應(yīng)的角的范圍,然后即可判斷出在哪一象限中.【題目詳解】第一象限所對應(yīng)的角為;第二象限所對應(yīng)的角為;第三象限所對應(yīng)的角為;第四象限所對應(yīng)的角為;因為,所以位于第三象限,故選C.【題目點撥】本題考查如何判斷角所在象限,能否明確每一象限所對應(yīng)的角的范圍是解決本題的關(guān)鍵,考查推理能力,是簡單題.10、B【解題分析】方程有實數(shù)根,則:,即:,則:,如圖所示,由幾何概型計算公式可得,滿足題意的概率值為:.本題選擇B選項.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解題分析】
連接、,取的中點,連接,可知,且是以為腰的等腰三角形,然后利用銳角三角函數(shù)可求出的值作為所求的答案.【題目詳解】如下圖所示:連接、,取的中點,連接,在正方體中,,則四邊形為平行四邊形,所以,則異面直線和所成的角為或其補角,易知,由勾股定理可得,,為的中點,則,在中,,因此,異面直線和所成角的余弦值為,故答案為.【題目點撥】本題考查異面直線所成角的余弦值的計算,求解異面直線所成的角一般利用平移直線法求解,遵循“一作、二證、三計算”,在計算時,一般利用銳角三角函數(shù)的定義或余弦定理求解,考查計算能力,屬于中等題.12、【解題分析】
求得,則可將問題轉(zhuǎn)化為求使得最大且使得為偶數(shù)的正整數(shù)的值,利用二次函數(shù)的基本性質(zhì)求解即可.【題目詳解】由等比數(shù)列的通項公式可得,,則問題轉(zhuǎn)化為求使得最大且使得為偶數(shù)的正整數(shù)的值,,當(dāng)時,取得最大值,此時為偶數(shù).因此,的最大項是第項.故答案為:.【題目點撥】本題考查等比數(shù)列前項積最值的計算,將問題進行轉(zhuǎn)化是解題的關(guān)鍵,考查分析問題和解決問題的能力,屬于中等題.13、【解題分析】
由題意得出,利用累加法可求出.【題目詳解】數(shù)列滿足,,,,因此,.故答案為:.【題目點撥】本題考查利用累加法求數(shù)列的通項,解題時要注意累加法對數(shù)列遞推公式的要求,考查計算能力,屬于中等題.14、【解題分析】
分別在和兩種情況下進行討論,當(dāng)時,根據(jù)二次函數(shù)圖像可得不等式組,從而求得結(jié)果.【題目詳解】①當(dāng),即時,不等式為:,恒成立,則滿足題意②當(dāng),即時,不等式恒成立則需:解得:綜上所述:本題正確結(jié)果:【題目點撥】本題考查不等式恒成立問題的求解,易錯點是忽略不等式是否為一元二次不等式,造成丟根;處理一元二次不等式恒成立問題的關(guān)鍵是結(jié)合二次函數(shù)圖象來得到不等關(guān)系,屬于??碱}型.15、,【解題分析】試題分析:由得由得,所以數(shù)列為等比數(shù)列,因此考點:等比數(shù)列通項與和項16、【解題分析】
利用等差中項的基本性質(zhì)求得,,并利用等差中項的性質(zhì)求出的值,由此可得出的值.【題目詳解】由等差中項的性質(zhì)可得,同理,由于、、成等差數(shù)列,所以,則,因此,.故答案為:.【題目點撥】本題考查利用等差中項的性質(zhì)求值,考查計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)是;(2).【解題分析】
(1)依據(jù)題意,寫出遞推式,由等差數(shù)列得定義即可判斷;(2)求出,利用極限知識,求出,即可求得的值。【題目詳解】(1)當(dāng)時,點,所以,即由得,當(dāng)時,,將代入,,故數(shù)列是以為公差的等差數(shù)列。(2)因為,所以,,由得,,,故,?!绢}目點撥】本題主要考查等差數(shù)列的定義和通項公式的運用,以及數(shù)列極限的運算。18、(1)見解析;(2).【解題分析】
(1)連接,證明平面,進而可得出;(2)連接、、,設(shè),過點在平面內(nèi)作,垂足為點,連接,設(shè),則角和均為直線與平面所成的角,從而可得出,即可求出所求角.【題目詳解】(1)如下圖所示,連接,在正方體中,平面,平面,,四邊形為正方形,,,平面,平面,;(2)連接、、,設(shè),過點在平面內(nèi)作,垂足為點,設(shè),設(shè)正方體的棱長為,在正方體中,且,所以,四邊形為平行四邊形,,平面,平面,在平面內(nèi),,,,,則、、、四點共面,為的中點,,且,平面,平面,,由勾股定理得,連接,設(shè),則直線與面所成角為,則,,由連比定理得,則,因此,直線與面所成角為.【題目點撥】本題考查線線垂直的證明,考查線面角的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題.19、(1),;(2).【解題分析】
(1)首先把化成的型式,再根據(jù)三角函的單調(diào)性即可解決(2)根據(jù)(1)結(jié)果把代入可得A的大小,從而計算出B的大小,根據(jù)正弦定理以及面積公式即可解決。【題目詳解】(1)因為,由,,得,,又,所以或,所以函數(shù)在上的遞增區(qū)間為:,;(2)因為,∴,∴,∴,,∴,,∵,∴.∴,在三角形中由正弦定理得,∴,.【題目點撥】本題主要考查了三角函數(shù)問題以及解三角形問題。三角函數(shù)問題??贾芷凇握{(diào)性最值等,在解三角形中長考的有正弦定理、余弦定理以及面積公式。20、(1)見解析;(2)見解析【解題分析】
(1)取的中點,連接,由平面平面,得平面,再證即可證明(2)證明平面,再根據(jù)面面垂直的判定定理從而進行證明.【題目詳解】(1)取的中點,連接,因為,且,.所以,.又因為平面平面,所以平面,又平面,所以又因為平面,平面,所以平面.(2)連接,由(1)知,又,,所以四邊形是平行四邊形,所以.又是正三角形,為的中點,∴,因為平面平面,所以平面,所以平面.又平面,所以.因為,,所以平面.因為平面,所以平面平面.【題目點撥】本題考查了線面平行的證明,線面垂直,面面垂直的判定定理,考查空間想象和推理能力,熟記定理是關(guān)鍵,是一道中檔題.21、(1)0.005;(2)平均分為73,眾數(shù)為65,中位數(shù)為;(3)10【解題分析】
(1)根據(jù)頻率之和為1,直接列式計算即可;(2)平均數(shù)等于每組的中間值乘以該組頻率,再求和;眾數(shù)指頻率最大的一組的中間值;中位數(shù)兩端的小長方形面積之和均為0.5;(3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年農(nóng)業(yè)項目居間服務(wù)合同2篇
- 二零二五年度范文設(shè)備租購服務(wù)合同2篇
- 二零二五年度集團公司內(nèi)部子公司間借款合同范本3篇
- 二零二五版花崗石石材行業(yè)標(biāo)準(zhǔn)制定與實施合同3篇
- 二零二五年高空玻璃安裝與玻璃清潔保養(yǎng)合同3篇
- 二零二五版公司獨立董事薪酬及激勵合同2篇
- 建筑工地2025年度水電暖供應(yīng)與安裝承包合同2篇
- 基于2025年度市場分析的營銷推廣合同標(biāo)的修訂3篇
- 二零二五版智能倉儲物流設(shè)施施工合同協(xié)議3篇
- 二零二五年度花卉新品種研發(fā)與購銷合同3篇
- 《無人機法律法規(guī)知識》課件-第1章 民用航空法概述
- 部編人教版六年級下冊語文1-6單元作文課件
- NB/T 11434.5-2023煤礦膏體充填第5部分:膠凝材料技術(shù)要求
- 2020-2024年安徽省初中學(xué)業(yè)水平考試中考物理試卷(5年真題+答案解析)
- 手術(shù)器械與敷料的傳遞
- 提高護士手衛(wèi)生執(zhí)行率PDCA案例匯報課件(32張)
- 日本人的色彩意識與自然觀
- 校園網(wǎng)絡(luò)系統(tǒng)的設(shè)計規(guī)劃任務(wù)書
- 部編版5年級語文下冊第五單元學(xué)歷案
- 建造師建設(shè)工程項目管理二局培訓(xùn)精簡版課件
- 電工(三級)理論知識考核要素細(xì)目表
評論
0/150
提交評論