2024屆河北省衡水市棗強縣棗強中學(xué)數(shù)學(xué)高一下期末質(zhì)量檢測模擬試題含解析_第1頁
2024屆河北省衡水市棗強縣棗強中學(xué)數(shù)學(xué)高一下期末質(zhì)量檢測模擬試題含解析_第2頁
2024屆河北省衡水市棗強縣棗強中學(xué)數(shù)學(xué)高一下期末質(zhì)量檢測模擬試題含解析_第3頁
2024屆河北省衡水市棗強縣棗強中學(xué)數(shù)學(xué)高一下期末質(zhì)量檢測模擬試題含解析_第4頁
2024屆河北省衡水市棗強縣棗強中學(xué)數(shù)學(xué)高一下期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆河北省衡水市棗強縣棗強中學(xué)數(shù)學(xué)高一下期末質(zhì)量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在平面直角坐標(biāo)系中,已知點,點,直線:.如果對任意的點到直線的距離均為定值,則點關(guān)于直線的對稱點的坐標(biāo)為()A. B. C. D.2.在銳角中ΔABC,角A,B所對的邊長分別為a,b.若2asinA.π12B.π6C.π3.“是第二象限角”是“是鈍角”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要4.在中,為的三等分點,則()A. B. C. D.5.已知實數(shù)x,y滿足約束條件,那么目標(biāo)函數(shù)的最大值是()A.0 B.1 C. D.106.已知實數(shù)滿足,則的取值范圍是()A. B. C. D.7.已知一個平面,那么對于空間內(nèi)的任意一條直線,在平面內(nèi)一定存在一條直線,使得與()A.平行B.相交C.異面D.垂直8.已知函數(shù),若實數(shù)滿足,則的取值范圍是()A. B. C. D.9.已知中,,,若,則的坐標(biāo)為()A. B. C. D.10.己知數(shù)列和的通項公式分別內(nèi),,若,則數(shù)列中最小項的值為()A. B.24 C.6 D.7二、填空題:本大題共6小題,每小題5分,共30分。11.某射手的一次射擊中,射中10環(huán)、9環(huán)、8環(huán)的概率分別為0.2、0.3、0.1,則此射手在一次射擊中不超過8環(huán)的概率為_________.12.若,且,則的最小值為_______.13.為了研究問題方便,有時將余弦定理寫成:,利用這個結(jié)構(gòu)解決如下問題:若三個正實數(shù),滿足,,,則_______.14.已知向量、的夾角為,且,,則__________.15.不等式x(2x﹣1)<0的解集是_____.16.已知方程的四個根組成一個首項為的等差數(shù)列,則_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,角,,所對的邊分別是,,,且.(1)求角;(2)若,求.18.已知圓過點和,且圓心在直線上.(Ⅰ)求圓的標(biāo)準(zhǔn)方程;(Ⅱ)求直線:被圓截得的弦長.19.如圖1,ABCD為菱形,∠ABC=60°,△PAB是邊長為2的等邊三角形,點M為AB的中點,將△PAB沿AB邊折起,使平面PAB⊥平面ABCD,連接PC、PD,如圖2,(1)證明:AB⊥PC;(2)求PD與平面ABCD所成角的正弦值(3)在線段PD上是否存在點N,使得PB∥平面MC?若存在,請找出N點的位置;若不存在,請說明理由20.如圖,在正方體,中,,,,,分別是棱,,,,的中點.(1)求證:平面平面;(2)求平面將正方體分成的兩部分體積之比.21.已知從甲地到乙地的公路里程約為240(單位:km).某汽車每小時耗油量Q(單位:L)與速度x(單位:)()的關(guān)系近似符合以下兩種函數(shù)模型中的一種(假定速度大小恒定):①,②,經(jīng)多次檢驗得到以下一組數(shù)據(jù):x04060120Q020(1)你認(rèn)為哪一個是符合實際的函數(shù)模型,請說明理由;(2)從甲地到乙地,這輛車應(yīng)以多少速度行駛才能使總耗油量最少?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】

利用點到直線的距離公式表示出,由對任意的點到直線的距離均為定值,從而可得,求得直線的方程,再利用點關(guān)于直線對稱的性質(zhì)即可得到對稱點的坐標(biāo)?!绢}目詳解】由點到直線的距離公式可得:點到直線的距離由于對任意的點到直線的距離均為定值,所以,即,所以直線的方程為:設(shè)點關(guān)于直線的對稱點的坐標(biāo)為故,解得:,所以設(shè)點關(guān)于直線的對稱點的坐標(biāo)為故答案選B【題目點撥】本題主要考查點關(guān)于直線對稱的對稱點的求法,涉及點到直線的距離,兩直線垂直斜率的關(guān)系,中點公式等知識點,考查學(xué)生基本的計算能力,屬于中檔題。2、D【解題分析】試題分析:∵2a考點:正弦定理解三角形3、B【解題分析】

由α是鈍角可得α是第二象限角,反之不成立,則答案可求.【題目詳解】若α是鈍角,則α是第二象限角;反之,若α是第二象限角,α不一定是鈍角,如α=﹣210°.∴“α是第二象限角”是“α是鈍角”的必要非充分條件.故選B.【題目點撥】本題考查鈍角、象限角的概念,考查了充分必要條件的判斷方法,是基礎(chǔ)題.4、B【解題分析】試題分析:因為,所以,以點為坐標(biāo)原點,分別為軸建立直角坐標(biāo)系,設(shè),又為的三等分點所以,,所以,故選B.考點:平面向量的數(shù)量積.【一題多解】若,則,即有,為邊的三等分點,則,故選B.5、D【解題分析】

根據(jù)約束條件,畫出可行域,再平移目標(biāo)函數(shù)所在的直線,找到最優(yōu)點,將最優(yōu)點的坐標(biāo)代入目標(biāo)函數(shù)求最值.【題目詳解】畫出可行域(如圖),平移直線,當(dāng)目標(biāo)直線過點時,目標(biāo)函數(shù)取得最大值,.故選:D【題目點撥】本題主要考查線性規(guī)劃求最值問題,還考查了數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.6、D【解題分析】

作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合即可得到結(jié)論.【題目詳解】由線性約束條件作出可行域,如下圖三角形陰影部分區(qū)域(含邊界),令,直線:,平移直線,當(dāng)過點時取得最大值,當(dāng)過點時取得最小值,所以的取值范圍是.【題目點撥】本題主要考查線性規(guī)劃的應(yīng)用.本題先正確的作出不等式組表示的平面區(qū)域,再結(jié)合目標(biāo)函數(shù)的幾何意義進行解答是解決本題的關(guān)鍵.7、D【解題分析】略8、B【解題分析】

求出函數(shù)的定義域,分析函數(shù)的單調(diào)性與奇偶性,將所求不等式變形為,然后利用函數(shù)的單調(diào)性與定義域可得出關(guān)于實數(shù)的不等式組,即可解得實數(shù)的取值范圍.【題目詳解】對于函數(shù),有,解得,則函數(shù)的定義域為,定義域關(guān)于原點對稱,,所以,函數(shù)為奇函數(shù),由于函數(shù)在區(qū)間上為增函數(shù),函數(shù)在區(qū)間上為減函數(shù),所以,函數(shù)在上為增函數(shù),由得,所以,,解得.因此,實數(shù)的取值范圍是.故選:B.【題目點撥】本題考查函數(shù)不等式的求解,解答的關(guān)鍵就是分析函數(shù)的單調(diào)性和奇偶性,考查計算能力,屬于中等題.9、A【解題分析】

根據(jù),,可得;由可得M為BC中點,即可求得的坐標(biāo),進而利用即可求解.【題目詳解】因為,所以因為,即M為BC中點所以所以所以選A【題目點撥】本題考查了向量的減法運算和線性運算,向量的坐標(biāo)運算,屬于基礎(chǔ)題.10、D【解題分析】

根據(jù)兩個數(shù)列的單調(diào)性,可確定數(shù)列,也就確定了其中的最小項.【題目詳解】由已知數(shù)列是遞增數(shù)列,數(shù)列是遞減數(shù)列,且計算后知,又,∴數(shù)列中最小項的值是1.故選D.【題目點撥】本題考查數(shù)列的單調(diào)性,數(shù)列的最值.解題時依據(jù)題意確定大小即可.本題難度一般.二、填空題:本大題共6小題,每小題5分,共30分。11、0.5【解題分析】

由互斥事件的概率加法求出射手在一次射擊中超過8環(huán)的概率,再利用對立事件的概率求出不超過8環(huán)的概率即可.【題目詳解】由題意,射中10環(huán)、9環(huán)、8環(huán)的概率分別為0.2、0.3、0.1,所以射手的一次射擊中超過8環(huán)的概率為:0.2+0.3=0.5故射手的一次射擊中不超過8環(huán)的概率為:1-0.5=0.5故答案為0.5【題目點撥】本題主要考查了對立事件的概率,屬于基礎(chǔ)題.12、【解題分析】

將變換為,展開利用均值不等式得到答案.【題目詳解】若,且,則時等號成立.故答案為【題目點撥】本題考查了均值不等式,“1”的代換是解題的關(guān)鍵.13、【解題分析】

設(shè)的角、、的對邊分別為、、,在內(nèi)取點,使得,設(shè),,,利用余弦定理得出的三邊長,由此計算出的面積,再利用可得出的值.【題目詳解】設(shè)的角、、的對邊分別為、、,在內(nèi)取點,使得,設(shè),,,由余弦定理得,,同理可得,,,則,的面積為,另一方面,解得,故答案為.【題目點撥】本題考查余弦定理的應(yīng)用,問題的關(guān)鍵在于將題中的等式轉(zhuǎn)化為余弦定理,并轉(zhuǎn)化為三角形的面積來進行計算,考查化歸與轉(zhuǎn)化思想以及數(shù)形結(jié)合思想,屬于中等題.14、【解題分析】

根據(jù)向量的數(shù)量積的應(yīng)用進行轉(zhuǎn)化即可.【題目詳解】,與的夾角為,∴?||||cos4,則,故答案為.【題目點撥】本題主要考查向量長度的計算,根據(jù)向量數(shù)量積的應(yīng)用是解決本題的關(guān)鍵.15、【解題分析】

求出不等式對應(yīng)方程的實數(shù)根,即可寫出不等式的解集,得到答案.【題目詳解】由不等式對應(yīng)方程的實數(shù)根為0和,所以該不等式的解集是.故答案為:.【題目點撥】本題主要考查了一元二次不等式的解法,其中解答中熟記一元二次不等式的解法是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.16、【解題分析】

把方程(x2﹣2x+m)(x2﹣2x+n)=0化為x2﹣2x+m=0,或x2﹣2x+n=0,設(shè)是第一個方程的根,代入方程即可求得m,則方程的另一個根可求;設(shè)另一個方程的根為s,t,(s≤t)根據(jù)韋達定理可知∴s+t=2根據(jù)等差中項的性質(zhì)可知四個跟成的等差數(shù)列為,s,t,,進而根據(jù)數(shù)列的第一項和第四項求得公差,則s和t可求,進而根據(jù)韋達定理求得n,最后代入|m﹣n|即可.【題目詳解】方程(x2﹣2x+m)(x2﹣2x+n)=0可化為x2﹣2x+m=0①,或x2﹣2x+n=0②,設(shè)是方程①的根,則將代入方程①,可解得m,∴方程①的另一個根為.設(shè)方程②的另一個根為s,t,(s≤t)則由根與系數(shù)的關(guān)系知,s+t=2,st=n,又方程①的兩根之和也是2,∴s+t由等差數(shù)列中的項的性質(zhì)可知,此等差數(shù)列為,s,t,,公差為[]÷3,∴s,t,∴n=st∴|m﹣n|=||.故答案為【題目點撥】本題主要考查了等差數(shù)列的性質(zhì).考查了學(xué)生創(chuàng)造性思維和解決問題的能力.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】

(1)利用正弦定理化簡即得;(2)由正弦定理得,再結(jié)合余弦定理可得.【題目詳解】解:(1)由正弦定理得:,又,,得.(2)由正弦定理得:,又由余弦定理:,代入,可得.【題目點撥】本題主要考查正弦定理余弦定理解三角形,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.18、(Ⅰ)(Ⅱ)【解題分析】

(Ⅰ)設(shè)出圓心坐標(biāo)和圓的標(biāo)準(zhǔn)方程,將點帶入求出結(jié)果即可;(Ⅱ)利用圓心到直線的距離和圓的半徑解直角三角形求得弦長.【題目詳解】解:(Ⅰ)由題意可設(shè)圓心坐標(biāo)為,則圓的標(biāo)準(zhǔn)方程為,∴解得故圓的標(biāo)準(zhǔn)方程為.(Ⅱ)圓心到直線的距離,∴直線被圓截得的弦長為.【題目點撥】本題考查了圓的方程,以及直線與圓相交求弦長的知識,屬于基礎(chǔ)題.19、(1)證明見解析(2).(3)存在,PN.【解題分析】

(1)只需證明AB⊥面PMC,即可證明AB⊥PC;(2)由PM⊥面ABCD得∠PDM為PD與平面ABCD所成角,解△PDM即可求得PD與平面ABCD所成角的正弦值.(3)設(shè)DB∩MC=E,連接NE,可得PB∥NE,.即可.【題目詳解】(1)證明:∵△PAB是邊長為2的等邊三角形,點M為AB的中點,∴PM⊥AB.∵ABCD為菱形,∠ABC=60°.∴CM⊥AB,且PM∩MC=M,∴AB⊥面PMC,∵PC?面PMC,∴AB⊥PC;(2)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PM⊥AB.∴PM⊥面ABCD,∴∠PDM為PD與平面ABCD所成角.PM,MD,PDsin∠PMD,即PD與平面ABCD所成角的正弦值為.(3)設(shè)DB∩MC=E,連接NE,則有面PBD∩面MNC=NE,∵PB∥平面MNC,∴PB∥NE.∴.線段PD上存在點N,使得PB∥平面MNC,且PN.【題目點撥】本題考查了面面垂直的性質(zhì)定理、線面垂直的判定定理、線面角,利用線面平行的性質(zhì)定理確定點N的位置是關(guān)鍵,屬于中檔題..20、(1)見解析(2)【解題分析】

(1)先證明平面,再證明平面平面;(2)連接,,則截面右側(cè)的幾何體為四棱錐和三棱錐,再求出每一部分的體積得解.【題目詳解】(1)證明:在正方體中,連接.因為,分別是,的中點,所以.因為平面,平面,所以.因為,所以平面,平面,所以,同理,因為,所以平面,因為平面,所以平面平面;(2)連接,,則截面右側(cè)的幾何體為四棱錐和三棱錐,設(shè)正方體棱長為1,所以,所以平面將正方體分成的兩部分體積之比為.【題目點撥】本題主要考查面面垂直關(guān)系的證明和幾何體體積的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論