版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆上海市奉賢區(qū)曙光中學(xué)高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在△ABC中,三個頂點(diǎn)分別為A(2,4),B(﹣1,2),C(1,0),點(diǎn)P(x,y)在△ABC的內(nèi)部及其邊界上運(yùn)動,則y﹣x的最小值是()A.﹣3 B.﹣1 C.1 D.32.已知集合A={x|x2﹣x﹣2<0},B={x|≥﹣1},則A∪B=()A.(﹣1,2) B.(﹣1,2] C.(0,1) D.(0,2)3.已知,取值如下表:014561.3m3m5.67.4畫散點(diǎn)圖分析可知:與線性相關(guān),且求得回歸方程為,則m的值(精確到0.1)為()A.1.5 B.1.6 C.1.7 D.1.84.執(zhí)行如圖所示的程序框圖,若輸出的S=88,則判斷框內(nèi)應(yīng)填入的條件是()A.k>4? B.k>5? C.k>6? D.k>7?5.下圖來自古希臘數(shù)學(xué)家希波克拉底所研究的平面幾何圖形.此圖由兩個圓構(gòu)成,O為大圓圓心,線段AB為小圓直徑.△AOB的三邊所圍成的區(qū)域記為I,黑色月牙部分記為Ⅱ,兩小月牙之和(斜線部分)部分記為Ⅲ.在整個圖形中隨機(jī)取一點(diǎn),此點(diǎn)取自Ⅰ,Ⅱ,Ⅲ的概率分別記為p1,p2,p3,則()A. B. C. D.6.在各項(xiàng)均為正數(shù)的等比數(shù)列中,公比.若,,,數(shù)列的前n項(xiàng)和為,則當(dāng)取最大值時,n的值為()A.8 B.9 C.8或9 D.177.若某扇形的弧長為,圓心角為,則該扇形的半徑是()A. B. C. D.8.在數(shù)列{an}中,若a1,且對任意的n∈N*有,則數(shù)列{an}前10項(xiàng)的和為()A. B. C. D.9.若直線經(jīng)過點(diǎn),則此直線的傾斜角是()A. B. C. D.10.從甲、乙、丙三人中,任選兩名代表,甲被選中的概率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則__________.12.已知的三邊分別是,且面積,則角__________.13.已知數(shù)列滿足,,,記數(shù)列的前項(xiàng)和為,則________.14.函數(shù)y=sin2x+2sin2x的最小正周期T為_______.15.正六棱柱底面邊長為10,高為15,則這個正六棱柱的體積是_____.16.若,則=_________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,內(nèi)角,,所對的邊分別為,,且.(1)求角的大?。唬?)若,,求的面積.18.已知數(shù)列滿足.證明數(shù)列為等差數(shù)列;求數(shù)列的通項(xiàng)公式.19.在中,角,,所對的邊分別為,,,且.(Ⅰ)求角的大?。唬á颍┤舻拿娣e為,其外接圓的半徑為,求的周長.20.已知向量,其中.函數(shù)的圖象過點(diǎn),點(diǎn)與其相鄰的最高點(diǎn)的距離為1.(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;(Ⅱ)計算的值;(Ⅲ)設(shè)函數(shù),試討論函數(shù)在區(qū)間[0,3]上的零點(diǎn)個數(shù).21.已知.(1)求;(2)求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解題分析】
根據(jù)線性規(guī)劃的知識求解.【題目詳解】根據(jù)線性規(guī)劃知識,的最小值一定在的三頂點(diǎn)中的某一個處取得,分別代入的坐標(biāo)可得的最小值是.故選B.【題目點(diǎn)撥】本題考查簡單的線性規(guī)劃問題,屬于基礎(chǔ)題.2、B【解題分析】
先分別求出集合A和B,由此能求出A∪B.【題目詳解】∵集合A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|≥﹣1}={x|0<x≤2},∴A∪B={x|﹣1<x≤2}=(﹣1,2].故選B.【題目點(diǎn)撥】本題考查并集的求法,考查并集定義等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.3、C【解題分析】
根據(jù)表格中的數(shù)據(jù),求得樣本中心為,代入回歸直線方程,即可求解.【題目詳解】由題意,根據(jù)表格中的數(shù)據(jù),可得,,即樣本中心為,代入回歸直線方程,即,解得,故選C.【題目點(diǎn)撥】本題主要考查了回歸直線方程的應(yīng)用,其中解答中熟記回歸直線方程的基本特征是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.4、B【解題分析】
分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸出S的值,條件框內(nèi)的語句決定是否結(jié)束循環(huán),模擬執(zhí)行程序即可得到結(jié)果.【題目詳解】程序在運(yùn)行過程中各變量值變化如下:第一次循環(huán)k=2,S=2;是第二次循環(huán)k=3,S=7;是第三次循環(huán)k=4,S=18;是第四次循環(huán)k=5,S=41;是第五次循環(huán)=6,S=88;否故退出循環(huán)的條件應(yīng)為k>5?,故選B.【題目點(diǎn)撥】本題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點(diǎn):(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問題時一定要正確控制循環(huán)次數(shù);(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運(yùn)算方法逐次計算,直到達(dá)到輸出條件即可.5、D【解題分析】
設(shè)OA=1,則AB,分別求出三個區(qū)域的面積,由測度比是面積比得答案.【題目詳解】設(shè)OA=1,則AB,,以AB中點(diǎn)為圓心的半圓的面積為,以O(shè)為圓心的大圓面積的四分之一為,以AB為弦的大圓的劣弧所對弓形的面積為π﹣1,黑色月牙部分的面積為π﹣(π﹣1)=1,圖Ⅲ部分的面積為π﹣1.設(shè)整個圖形的面積為S,則p1,p1,p3.∴p1=p1>p3,故選D.【題目點(diǎn)撥】本題考查幾何概型概率的求法,考查數(shù)形結(jié)合的解題思想方法,正確求出各部分面積是關(guān)鍵,是中檔題.6、C【解題分析】∵為等比數(shù)列,公比為,且∴∴,則∴∴∴,∴數(shù)列是以4為首項(xiàng),公差為的等差數(shù)列∴數(shù)列的前項(xiàng)和為令當(dāng)時,∴當(dāng)或9時,取最大值.故選C點(diǎn)睛:(1)在解決等差數(shù)列、等比數(shù)列的運(yùn)算問題時,有兩個處理思路:一是利用基本量將多元問題簡化為一元問題;二是利用等差數(shù)列、等比數(shù)列的性質(zhì),性質(zhì)是兩種數(shù)列基本規(guī)律的深刻體現(xiàn),是解決等差數(shù)列、等比數(shù)列問題的快捷方便的工具;(2)求等差數(shù)列的前項(xiàng)和最值的兩種方法:①函數(shù)法:利用等差數(shù)列前項(xiàng)和的函數(shù)表達(dá)式,通過配方或借助圖象求二次函數(shù)最值的方法求解;②鄰項(xiàng)變號法:當(dāng)時,滿足的項(xiàng)數(shù)使得取得最大值為;當(dāng)時,滿足的項(xiàng)數(shù)使得取得最小值為.7、D【解題分析】
由扇形的弧長公式列方程得解.【題目詳解】設(shè)扇形的半徑是,由扇形的弧長公式得:,解得:故選D【題目點(diǎn)撥】本題主要考查了扇形的弧長公式,考查了方程思想,屬于基礎(chǔ)題.8、A【解題分析】
用累乘法可得.利用錯位相減法可得S,即可求解S10=22.【題目詳解】∵,則.∴,.Sn,.∴,∴S,則S10=22.故選:A.【點(diǎn)評】本題考查了累乘法求通項(xiàng),考查了錯位相減法求和,意在考查計算能力,屬于中檔題.9、D【解題分析】
先通過求出兩點(diǎn)的斜率,再通過求出傾斜角的值。【題目詳解】,選D.【題目點(diǎn)撥】先通過求出兩點(diǎn)的斜率,再通過求出傾斜角的值。需要注意的是斜率不存在的情況。10、D【解題分析】
采用列舉法寫出總事件,再結(jié)合古典概型公式求解即可【題目詳解】被選出的情況具體有:甲乙、甲丙、乙丙,甲被選中有兩種,則故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
對已知等式的左右兩邊同時平方,利用同角的三角函數(shù)關(guān)系式和二倍角的正弦公式,可以求出的值,再利用二倍角的余弦公式可以求出.【題目詳解】因?yàn)?,所以,即,所?【題目點(diǎn)撥】本題考查了同角的三角函數(shù)關(guān)系,考查了二倍角的正弦公式和余弦公式,考查了數(shù)學(xué)運(yùn)算能力.12、【解題分析】試題分析:由,可得,整理得,即,所以.考點(diǎn):余弦定理;三角形的面積公式.13、7500【解題分析】
討論的奇偶性,分別化簡遞推公式,根據(jù)等差數(shù)列的定義得的通項(xiàng)公式,進(jìn)而可求.【題目詳解】當(dāng)是奇數(shù)時,=﹣1,由,得,所以,,,…,…是以為首項(xiàng),以2為公差的等差數(shù)列,當(dāng)為偶數(shù)時,=1,由,得,所以,,,…,…是首項(xiàng)為,以4為公差的等差數(shù)列,則,所以.故答案為:7500【題目點(diǎn)撥】本題考查數(shù)列遞推公式的化簡,等差數(shù)列的通項(xiàng)公式,以及等差數(shù)列前n項(xiàng)和公式的應(yīng)用,也考查了分類討論思想,屬于中檔題.14、【解題分析】考點(diǎn):此題主要考查三角函數(shù)的概念、化簡、性質(zhì),考查運(yùn)算能力.15、【解題分析】
正六棱柱是底面為正六邊形的直棱柱,利用計算可得結(jié)果.【題目詳解】因?yàn)檎庵酌孢呴L為10,所以其面積,所以體積.【題目點(diǎn)撥】本題考查正六棱柱的概念及其體積的計算,考查基本運(yùn)算能力.16、【解題分析】
∵,∴∴=1×[+]=1.故答案為:1.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】
(1)由正弦定理以及兩角差的余弦公式得到,由特殊角的三角函數(shù)值得到結(jié)果;(2)結(jié)合余弦定理和面積公式得到結(jié)果.【題目詳解】(1)由正弦定理得,∵,∴,即,∴又∵,∴.(2)∵∴.∴,∴.【題目點(diǎn)撥】本題主要考查正弦定理及余弦定理的應(yīng)用以及三角形面積公式,屬于難題.在解與三角形有關(guān)的問題時,正弦定理、余弦定理是兩個主要依據(jù).解三角形時,有時可用正弦定理,有時也可用余弦定理,應(yīng)注意用哪一個定理更方便、簡捷一般來說,當(dāng)條件中同時出現(xiàn)及、時,往往用余弦定理,而題設(shè)中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時,往往運(yùn)用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進(jìn)行解答.18、(1)見解析;(2)【解題分析】
(1)已知遞推關(guān)系取倒數(shù),利用等差數(shù)列的定義,即可證明.(2)由(1)可知數(shù)列為等差數(shù)列,確定數(shù)列的通項(xiàng)公式,即可求出數(shù)列的通項(xiàng)公式.【題目詳解】證明:,且有,,又,,即,且,是首項(xiàng)為1,公差為的等差數(shù)列.解:由知,即,所以.【題目點(diǎn)撥】本題考查數(shù)列遞推關(guān)系、等差數(shù)列的判斷方法,考查了運(yùn)用取倒數(shù)法求數(shù)列的通項(xiàng)公式,考查了推理能力和計算能力,屬于中檔題.19、(Ⅰ);(Ⅱ)【解題分析】
(Ⅰ)由由正弦定理得,進(jìn)而得到,求得,即可求解;(Ⅱ)由(Ⅰ)和正弦定理,求得,再由余弦定理得,利用三角形的面積公式,求得,進(jìn)而求得的值,得出三角形的周長.【題目詳解】(Ⅰ)由題意,因?yàn)?,由正弦定理,得,即,由,得,又由,則,所以,解得,又因?yàn)?,所?(Ⅱ)由(Ⅰ)知,且外接圓的半徑為,由正弦定理可得,解得,由余弦定理得,可得,因?yàn)榈拿娣e為,解得,所以,解得:,所以的周長.【題目點(diǎn)撥】本題主要考查了三角恒等變換的應(yīng)用,以及正弦定理、余弦定理和三角形的面積公式的應(yīng)用,其中在解有關(guān)三角形的題目時,要抓住題設(shè)條件和利用某個定理的信息,合理應(yīng)用正弦定理和余弦定理求解是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.20、(Ⅰ),;(Ⅱ)2028;(Ⅲ)詳見解析.【解題分析】
(Ⅰ)由數(shù)量積的坐標(biāo)運(yùn)算可得f(x),由題意求得ω,再由函數(shù)f(x)的圖象過點(diǎn)B(2,2)列式求得.則函數(shù)解析式可求,由復(fù)合函數(shù)的單調(diào)性求得f(x)的單調(diào)遞增區(qū)間;(Ⅱ)由(Ⅰ)知,f(x)=2+sin,可得f(x)是周期為2的周期函數(shù),且f(2)=2,f(2)=2,f(3)=0,f(2)=2.得到f(2)+f(2)+f(3)+f(2)=2.進(jìn)一步可得結(jié)論;(Ⅲ)g(x)=f(x)﹣m﹣2,函數(shù)g(x)在[0,3]上的零點(diǎn)個數(shù),即為函數(shù)y=sin的圖象與直線y=m在[0,3]上的交點(diǎn)個數(shù).?dāng)?shù)形結(jié)合得答案.【題目詳解】(Ⅰ)∵(,cos2(ωx+φ)),(,),∴f(x)cos2(ωx+)=2﹣cos2(ωx+)),∴f(x)max=2,則點(diǎn)B(2,2)為函數(shù)f(x)的圖象的一個最高點(diǎn).∵點(diǎn)B與其相鄰的最高點(diǎn)的距離為2,∴,得ω.∵函數(shù)f(x)的圖象過點(diǎn)B(2,2),∴,即sin2φ=2.∵0<,∴.∴f(x)=2﹣cos2()=2+sin,由,得,.的單調(diào)遞減區(qū)間是,.(Ⅱ)由(Ⅰ)知,f(x)=2+sin,∴f(x)是周期為2的周期函數(shù),且f(2)=2,f(2)=2,f(3)=0,f(2)=2.∴f(2)+f(2)+f(3)+f(2)=2.而2027=2×502+2,∴f(2)+f(2)+…+f(2027)=2×502+2=2028;(Ⅲ)g(x)=f(x)﹣m﹣2,函數(shù)g(x)在[0,3]上的零點(diǎn)個數(shù),即為函數(shù)y=sin的圖象與直線y=m在[0,3]上的交點(diǎn)個數(shù).在同一直角坐標(biāo)系內(nèi)作出兩個函數(shù)的圖象如圖:①當(dāng)m>2或m<﹣2時,兩函數(shù)的圖象在[0,3]內(nèi)無公共點(diǎn);②當(dāng)﹣2≤m<0或m=2時,兩函數(shù)的圖象在[0,3]內(nèi)有一個共點(diǎn);③當(dāng)0≤m<2時,兩函數(shù)的圖象在[0,3]內(nèi)有兩個共點(diǎn).綜上,當(dāng)m>2或m<﹣2時,函數(shù)g(x)在[0,3]上無零點(diǎn);②當(dāng)﹣2≤m<0或m=2時,函數(shù)g(x)在[0,3]內(nèi)有2個零點(diǎn);③當(dāng)0≤m<2時,函數(shù)g(x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【講練通】2021版高中歷史岳麓版必修1-單元質(zhì)量評估(三)
- 六年級上冊數(shù)學(xué)教研組工作計劃范文評價
- 【學(xué)練考】2021-2022蘇教版化學(xué)必修1練習(xí)-專題3-從礦物到基礎(chǔ)材料
- 三年級數(shù)學(xué)(上)計算題專項(xiàng)練習(xí)附答案
- 五年級數(shù)學(xué)(小數(shù)乘除法)計算題專項(xiàng)練習(xí)及答案匯編
- 全程方略2021屆高考數(shù)學(xué)專項(xiàng)精析精煉:2014年考點(diǎn)48-隨機(jī)事件的概率、古典概型、幾何概型
- 家長進(jìn)課堂小學(xué)生食品安演示教學(xué)
- 增塑劑聚酯薄膜行業(yè)分析
- 2018-2019學(xué)年高中生物-第三章-遺傳的分子基礎(chǔ)本章知識體系構(gòu)建課件-浙科版必修2
- (期末押題卷)期末重難點(diǎn)高頻易錯培優(yōu)卷(試題)-2024-2025學(xué)年四年級上冊數(shù)學(xué)人教版
- 2025年中國社會科學(xué)院外國文學(xué)研究所專業(yè)技術(shù)人員招聘3人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 【9歷期末】安徽省淮北市2023-2024學(xué)年九年級上學(xué)期期末歷史試題
- 小紅書營銷師(初級)認(rèn)證理論知識考試題及答案
- 2024年度物流園區(qū)運(yùn)營承包合同范本3篇
- 第五單元第四節(jié) 全球發(fā)展與合作 教學(xué)實(shí)錄-2024-2025學(xué)年粵人版地理七年級上冊
- 貴州省部分學(xué)校2024-2025學(xué)年高三年級上冊10月聯(lián)考 化學(xué)試卷
- 2023-2024學(xué)年貴州省貴陽外國語實(shí)驗(yàn)中學(xué)八年級(上)期末數(shù)學(xué)試卷(含答案)
- 廣東省廣州市越秀區(qū)2022-2023學(xué)年八年級上學(xué)期期末歷史試題(含答案)
- 2024年二級建造師繼續(xù)教育考核題及答案
- 房地產(chǎn)公司出納員年度工作總結(jié)
- GB/T 1038-2000塑料薄膜和薄片氣體透過性試驗(yàn)方法壓差法
評論
0/150
提交評論