




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江西省鄱陽縣第二中學數(shù)學高一下期末學業(yè)質量監(jiān)測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,則下列不等式正確的是()A. B. C. D.2.設,,,則的最小值為()A.2 B.4 C. D.3.如果若干個函數(shù)的圖象經(jīng)過平移后能夠重合,則稱這些函數(shù)為“同簇函數(shù)”.給出下列函數(shù):①;②;③;④.其中“同簇函數(shù)”的是()A.①②B.①④C.②③D.③④4.如果,那么下列不等式錯誤的是()A. B.C. D.5.等比數(shù)列的前n項和為,若,則等于()A.-3 B.5 C.33 D.-316.的值等于()A. B.- C. D.-7.已知α、β為銳角,cosα=,tan(α?β)=?,則tanβ=()A. B.3 C. D.8.已知函數(shù),則()A. B. C. D.9.一個盒子內裝有大小相同的紅球、白球和黑球若干個,從中摸出1個球,若摸出紅球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或紅球的概率是()A.0.3 B.0.55 C.0.7 D.0.7510.已知為等差數(shù)列,,則的值為()A.3 B.2 C. D.1二、填空題:本大題共6小題,每小題5分,共30分。11.已知曲線與直線交于A,B兩點,若直線OA,OB的傾斜角分別為、,則__________12.若實數(shù),滿足,則的最小值為________.13.△ABC中,,,則=_____.14.設等比數(shù)列的公比,前項和為,則.15.已知,為單位向量,且,若向量滿足,則的最小值為_____.16.已知的圓心角所對的弧長等于,則該圓的半徑為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量.(1)若,且,求實數(shù)的值;(2)若,且與的夾角為,求實數(shù)的值.18.已知數(shù)列的前項和();(1)判斷數(shù)列是否為等差數(shù)列;(2)設,求;(3)設(),,是否存在最小的自然數(shù),使得不等式對一切正整數(shù)總成立?如果存在,求出;如果不存在,說明理由;19.已知的內角A,B,C所對的邊分別為a,b,c,其外接圓的面積為,且.(1)求邊長c;(2)若的面積為,求的周長.20.已知等比數(shù)列的公比,前項和為,且滿足.,,分別是一個等差數(shù)列的第1項,第2項,第5項.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和;(3)若,的前項和為,且對任意的滿足,求實數(shù)的取值范圍.21.已知數(shù)列中,,.(1)證明數(shù)列為等比數(shù)列,并求的通項公式;(2)數(shù)列滿足,數(shù)列的前項和為,求證.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】
根據(jù)不等式性質,結合特殊值即可比較大小.【題目詳解】對于A,當,滿足,但不滿足,所以A錯誤;對于B,當時,不滿足,所以B錯誤;對于C,由不等式性質“不等式兩邊同時加上或減去同一個數(shù)或式子,不等式符號不變”,所以由可得,因而C正確;對于D,當時,不滿足,所以D錯誤.綜上可知,C為正確選項,故選:C.【題目點撥】本題考查了不等式大小比較,不等式性質及特殊值的簡單應用,屬于基礎題.2、D【解題分析】
利用基本不等式可得,再結合代入即可得出答案.【題目詳解】解:∵,,,∴,∴,當且僅當即,時等號成立,∴,故選:D.【題目點撥】本題主要考查基本不等式求最值,要注意條件“一正二定三相等”,屬于中檔題.3、C【解題分析】試題分析:對于①中的函數(shù)而言,,對于③中的函數(shù)而言,,由“同簇函數(shù)”的定義而知,互為“同簇函數(shù)”的若干個函數(shù)的振幅相等,將②中的函數(shù)向左平移個單位長度,得到的新函數(shù)解析式為,故選C.考點:1.新定義;2.三角函數(shù)圖象變換4、A【解題分析】
利用不等式的性質或比較法對各選項中不等式的正誤進行判斷.【題目詳解】,,,則,,可得出,因此,A選項錯誤,故選:A.【題目點撥】本題考查判斷不等式的正誤,常利用不等式的性質或比較法來進行判斷,考查推理能力,屬于基礎題.5、C【解題分析】
由等比數(shù)列的求和公式結合條件求出公比,再利用等比數(shù)列求和公式可求出.【題目詳解】設等比數(shù)列的公比為(公比顯然不為1),則,得,因此,,故選C.【題目點撥】本題考查等比數(shù)列基本量計算,利用等比數(shù)列求和公式求出其公比,是解本題的關鍵,一般在求解等比數(shù)列問題時,有如下兩種方法:(1)基本量法:利用首項和公比列方程組解出這兩個基本量,然后利用等比數(shù)列的通項公式或求和公式來進行計算;(2)性質法:利用等比數(shù)列下標有關的性質進行轉化,能起到簡化計算的作用.6、C【解題分析】
利用誘導公式把化簡成.【題目詳解】【題目點撥】本題考查誘導公式的應用,即把任意角的三角函數(shù)轉化成銳角三角函數(shù),考查基本運算求解能力.7、B【解題分析】
利用角的關系,再利用兩角差的正切公式即可求出的值.【題目詳解】因為,且為銳角,則,所以,因為,所以故選B.【題目點撥】主要考查了兩角差的正切公式,同角三角函數(shù)的平方關系,屬于中檔題.對于給值求值問題,關鍵是尋找已知角(條件中的角)與未知角(問題中的角)的關系,用已知角表示未知角,從而將問題轉化為求已知角的三角函數(shù)值,再利用兩角和與差的三角函數(shù)公式、二倍角公式以及誘導公式即可求出.8、A【解題分析】
由題意結合函數(shù)的解析式分別求得的值,然后求解兩者之差即可.【題目詳解】由題意可得:,,則.故選:A.【題目點撥】求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當出現(xiàn)f(f(a))的形式時,應從內到外依次求值.9、D【解題分析】
由題意可知摸出黑球的概率,再根據(jù)摸出黑球,摸出紅球為互斥事件,根據(jù)互斥事件的和即可求解.【題目詳解】因為從中摸出1個球,若摸出紅球的概率是0.45,摸出白球的概率是0.25,所以摸出黑球的概率是,因為從盒子中摸出1個球為黑球或紅球為互斥事件,所以摸出黑球或紅球的概率,故選D.【題目點撥】本題主要考查了兩個互斥事件的和事件,其概率公式,屬于中檔題.10、D【解題分析】
根據(jù)等差數(shù)列下標和性質,即可求解.【題目詳解】因為為等差數(shù)列,故解得.故選:D.【題目點撥】本題考查等差數(shù)列下標和性質,屬基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
曲線即圓曲線的上半部分,因為圓是單位圓,所以,,,,聯(lián)立曲線與直線方程,消元后根據(jù)韋達定理與直線方程代入即可求解.【題目詳解】由消去得,則,由三角函數(shù)的定義得故.【題目點撥】本題主要考查三角函數(shù)的定義,直線與圓的應用.此題關鍵在于曲線的識別與三角函數(shù)定義的應用.12、【解題分析】
由題意可得=≥2=2,由不等式的性質變形可得.【題目詳解】∵正實數(shù)a,b滿足,∴=≥2=2,∴ab≥2當且僅當=即a=且b=2時取等號.故答案為2.【題目點撥】本題考查基本不等式求最值,涉及不等式的性質,屬基礎題.13、【解題分析】試題分析:三角形中,,由,得又,所以有正弦定理得即即A為銳角,由得,因此考點:正余弦定理14、15【解題分析】分析:運用等比數(shù)列的前n項和公式與數(shù)列通項公式即可得出的值.詳解:數(shù)列為等比數(shù)列,故答案為15.點睛:本題考查了等比數(shù)列的通項公式與前n項和公式,考查學生對基本概念的掌握能力與計算能力.15、.【解題分析】
由題意設,,,由得出,它表示圓,由,利用向量的模的幾何意義從而得到最小值.【題目詳解】由題意設,,,因,即,所以,它表示圓心為,半徑的圓,又,所以,而表示圓上的點與點的距離的平方,由,所以,故的最小值為.故答案為:.【題目點撥】本題考查了平面向量的數(shù)量積與應用問題,也考查了圓的方程與應用問題,屬于中檔題.16、【解題分析】
先將角度化為弧度,再根據(jù)弧長公式求解.【題目詳解】解:圓心角,弧長為,,即該圓的半徑長.故答案為:.【題目點撥】本題考查了角度和弧度的互化以及弧長公式的應用問題,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】
(1)根據(jù)平面向量加法和數(shù)乘的坐標表示公式、數(shù)量積的坐標表示公式,結合兩個互相垂直的平面向量數(shù)量積為零,進行求解即可;(2)利用平面向量夾角公式進行求解即可.【題目詳解】(1)當時,.因為,所以;(2)當時,所以有,因為與的夾角為,所以有.【題目點撥】本題考查了平面向量運算的坐標表示公式,考查了平面向量夾角公式,考查了數(shù)學運算能力.18、(1)否;(2);(3);【解題分析】
(1)根據(jù)數(shù)列中與的關系式,即可求解數(shù)列的通項公式,再結合等差數(shù)列的定義,即可求解;(2)由(1)知,求得當時,,當時,,利用等差數(shù)列的前項和公式,分類討論,即可求解.(3)由(1)得到當時,,當時,,結合裂項法,求得,即可求解.【題目詳解】(1)由題意,數(shù)列的前項和(),當時,,當,所以數(shù)列的通項公式為,所以數(shù)列不是等差數(shù)列.(2)由(1)知,令,解得,所以當時,,當時,,①當時,②當時,綜上可得.(3)由(1)可得,當時,,當時,,,要使得不等式對一切正整數(shù)總成立,則,即.【題目點撥】本題主要考查了數(shù)列中與的關系式,等差數(shù)列的定義,數(shù)列的絕對值的和,以及“裂項法”的綜合應用,著重考查了分析問題和解答問題的能力,以及推理與計算能力,試題有一定的綜合性,屬于中檔試題.19、(1)(2)【解題分析】
(1)計算得到,,利用正弦定理計算得到答案.(2)根據(jù)余弦定理得到,根據(jù)面積公式得到,得到答案.【題目詳解】(1),.,.,,.(2)由余弦定理得:.,,,,.的周長為.【題目點撥】本題考查了正弦定理,余弦定理和面積公式,意在考查學生的計算能力.20、(1).(2);(3)【解題分析】
(1)利用等比數(shù)列通項公式以及求和公式化簡,得到,由,,分別是一個等差數(shù)列的第1項,第2項,第5項,利用等差數(shù)列的定義可得,化簡即可求出,從而得到數(shù)列的通項公式.(2)由(1)可得,利用錯位相減,求出數(shù)列的前項和即可;(3)結合(1)可得,利用裂項相消法,即可得到的前項和,求出的最大值,即可解得實數(shù)的取值范圍【題目詳解】(1)由得,所以,由,,分別是一個等差數(shù)列的第1項,第2項,第5項,得,即,即,即,因為,所以,所以.(2)由于,所以,所以,,兩式相減得,,所以(3)由知,∴,∴,解得或.即實數(shù)的取值范圍是【題目點撥】本題考查等比數(shù)列通項公式與前項和,等差數(shù)列的定義,以及利用錯位相減法和裂項相消法求數(shù)列的前項和,考查學生的計算能力,有一定綜合性.21、(1)證明見解析;;(2)【解題分析】
(1)先證明數(shù)列是以3為公比,以為首項的等比數(shù)列,從而,由此能求出的通項
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 歷史●福建卷丨2021年福建省普通高中學業(yè)水平選擇性考試歷史試卷及答案
- 《網(wǎng)絡與信息安全管理員》模擬練習題(含答案)
- 2025年CSCO指南更新要點
- 袁世碩《中國古代文學作品選》(明代)
- AI大模型驅動的數(shù)字化港口物聯(lián)網(wǎng)平臺建設方案
- 重癥監(jiān)護病房的身體約束實踐
- 2024年免疫球蛋白診斷血清資金需求報告代可行性研究報告
- 2025年全民科學素質競賽網(wǎng)絡知識競賽試題庫及答案(共180題)
- 銷售面試題目及答案
- 吸痰的試題及答案
- 金融租賃測試題及答案
- 2025-2030全球及中國貫穿玻璃通孔(TGV)技術行業(yè)市場現(xiàn)狀供需分析及市場深度研究發(fā)展前景及規(guī)劃可行性分析研究報告
- 法律文化-形考作業(yè)2-國開(ZJ)-參考資料
- 2025年跨文化溝通能力考試試卷及答案
- 2025-2030中國激光多普勒測振儀行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 聾校義務教育數(shù)學課程標準解讀與實施
- 《企業(yè)數(shù)據(jù)中心網(wǎng)絡架構》課件
- 高職色彩考試題及答案
- 物業(yè)管理規(guī)范試題及答案
- 美國地理考試題及答案
- 2025-2030中國食品市場調研及重點企業(yè)投資評估規(guī)劃分析研究報告
評論
0/150
提交評論