版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河北省張家口市宣化一中張北一中2024屆高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知數(shù)列滿足,,且,則A.4 B.5 C.6 D.82.是空氣質(zhì)量的一個重要指標,我國標準采用世衛(wèi)組織設(shè)定的最寬限值,即日均值在以下空氣質(zhì)量為一級,在之間空氣質(zhì)量為二級,在以上空氣質(zhì)量為超標.如圖是某地11月1日到10日日均值(單位:)的統(tǒng)計數(shù)據(jù),則下列敘述不正確的是()A.這天中有天空氣質(zhì)量為一級 B.這天中日均值最高的是11月5日C.從日到日,日均值逐漸降低 D.這天的日均值的中位數(shù)是3.角的終邊經(jīng)過點,那么的值為()A. B. C. D.4.已知直線,直線,若,則直線與的距離為()A. B. C. D.5.設(shè)全集,集合,,則()A. B. C. D.6.某快遞公司在我市的三個門店,,分別位于一個三角形的三個頂點處,其中門店,與門店都相距,而門店位于門店的北偏東方向上,門店位于門店的北偏西方向上,則門店,間的距離為()A. B. C. D.7.中,,則()A.5 B.6 C. D.88.已知是兩條不重合的直線,為兩個不同的平面,則下列說法正確的是()A.若,是異面直線,那么與相交B.若//,,則C.若,則//D.若//,則9.若,則()A. B. C. D.10.“數(shù)列為等比數(shù)列”是“數(shù)列為等比數(shù)列”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.非充分非必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.在平面直角坐標系中,點,,若直線上存在點使得,則實數(shù)的取值范圍是_____.12.某產(chǎn)品分為優(yōu)質(zhì)品、合格品、次品三個等級,生產(chǎn)中出現(xiàn)合格品的概率為0.25,出現(xiàn)次品的概率為0.03,在該產(chǎn)品中任抽一件,則抽到優(yōu)質(zhì)品的概率為__________.13.已知為的三個內(nèi)角A,B,C的對邊,向量,.若,且,則B=14.在等比數(shù)列中,,,則______________.15.等差數(shù)列前項和為,已知,,則_____.16.如果3個正整數(shù)可作為一個直角三角形三條邊的邊長,則稱這3個數(shù)為一組勾股數(shù).現(xiàn)從1,2,3,4,5中任取3個不同的數(shù),則這3個數(shù)構(gòu)成一組勾股數(shù)的概率為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知方程;(1)若,求的值;(2)若方程有實數(shù)解,求實數(shù)的取值范圍;(3)若方程在區(qū)間上有兩個相異的解、,求的最大值.18.已知函數(shù)(其中,)的最小正周期為,且圖象經(jīng)過點(1)求函數(shù)的解析式:(2)求函數(shù)的單調(diào)遞增區(qū)間.19.已知(且)是R上的奇函數(shù),且.(1)求的解析式;(2)若關(guān)于x的方程在區(qū)間內(nèi)只有一個解,求m的取值集合;(3)設(shè),記,是否存在正整數(shù)n,使不得式對一切均成立?若存在,求出所有n的值,若不存在,說明理由.20.已知公差不為零的等差數(shù)列的前項和為,,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)若,數(shù)列的前項和為,求.21.已知函數(shù)為奇函數(shù).(1)求實數(shù)的值并證明函數(shù)的單調(diào)性;(2)解關(guān)于不等式:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】
利用,,依次求,觀察歸納出通項公式,從而求出的值.【題目詳解】∵數(shù)列滿足,,,∴,∴,∴,,∴,∴,……,∵,,,,…….,由此歸納猜想,∴.故選B.【題目點撥】本題考查了一個教復雜的遞推關(guān)系,本題的難點在于數(shù)列的項位于指數(shù)位置,不易化簡和轉(zhuǎn)化,一般的求通項方法無法解決,當遇見這種情況時一般我們就可以用“歸納”的方法處理,即通過求幾項,然后觀察規(guī)律進而得到結(jié)論.2、D【解題分析】
由折線圖逐一判斷各選項即可.【題目詳解】由圖易知:第3,8,9,10天空氣質(zhì)量為一級,故A正確,11月5日日均值為82,顯然最大,故B正確,從日到日,日均值分別為:82,73,58,34,30,逐漸降到,故C正確,中位數(shù)是,所以D不正確,故選D.【題目點撥】本題考查了頻數(shù)折線圖,考查讀圖,識圖,用圖的能力,考查中位數(shù)的概念,屬于基礎(chǔ)題.3、C【解題分析】,故選C。4、A【解題分析】
利用直線平行的性質(zhì)解得,再由兩平行線間的距離求解即可【題目詳解】∵直線l1:ax+2y﹣1=0,直線l2:8x+ay+2﹣a=0,l1∥l2,∴,且解得a=﹣1.所以直線l1:1x-2y+1=0,直線l2:1x-2y+3=0,故與的距離為故選A.【題目點撥】本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意直線平行的性質(zhì)的靈活運用.5、D【解題分析】
先求得集合的補集,然后求其與集合的交集,由此得出正確選項.【題目詳解】依題意,所以,故選D.【題目點撥】本小題主要考查集合補集、交集的概念和運算,屬于基礎(chǔ)題.6、C【解題分析】
根據(jù)題意,作出圖形,結(jié)合圖形利用正弦定理,即可求解,得到答案.【題目詳解】如圖所示,依題意知,,,由正弦定理得:,則.故選C.【題目點撥】本題主要考查了三角形的實際應用問題,其中解答中根據(jù)題意作出圖形,合理使用正弦定理求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.7、D【解題分析】
根據(jù)余弦定理,可求邊長.【題目詳解】,代入數(shù)據(jù),化解為解得或(舍)故選D.【題目點撥】本題考查了已知兩邊及其一邊所對角,求另一邊,這種題型用余弦定理,屬于基礎(chǔ)題型.8、D【解題分析】
采用逐一驗證法,結(jié)合線面以及線線之間的位置關(guān)系,可得結(jié)果.【題目詳解】若,是異面直線,與也可平行,故A錯若//,,也可以在內(nèi),故B錯若也可以在內(nèi),故C錯若//,則,故D對故選:D【題目點撥】本題主要考查線面以及線線之間的位置關(guān)系,屬基礎(chǔ)題.9、C【解題分析】
由及即可得解.【題目詳解】由,可得.故選C.【題目點撥】本題主要考查了同角三角函數(shù)的基本關(guān)系及二倍角公式,屬于基礎(chǔ)題.10、A【解題分析】
數(shù)列是等比數(shù)列與命題是等比數(shù)列是否能互推,然后根據(jù)必要條件、充分條件和充要條件的定義進行判斷.【題目詳解】若數(shù)列是等比數(shù)列,則,∴,∴數(shù)列是等比數(shù)列,若數(shù)列是等比數(shù)列,則,∴,∴數(shù)列不是等比數(shù)列,∴數(shù)列是等比數(shù)列是數(shù)列是等比數(shù)列的充分非必要條件,故選:A.【題目點撥】本題主要考查充分不必要條件的判斷,注意等比數(shù)列的性質(zhì)的靈活運用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解題分析】
設(shè)由,求出點軌跡方程,可判斷其軌跡為圓,點又在直線,轉(zhuǎn)化為直線與圓有公共點,只需圓心到直線的距離小于半徑,得到關(guān)于的不等式,求解,即可得出結(jié)論.【題目詳解】設(shè),,,,整理得,又點在直線,直線與圓共公共點,圓心到直線的距離,即.故答案為:.【題目點撥】本題考查求曲線的軌跡方程,考查直線與圓的位置關(guān)系,屬于中檔題.12、0.72【解題分析】
根據(jù)對立事件的概率公式即可求解.【題目詳解】由題意,在該產(chǎn)品中任抽一件,“抽到優(yōu)質(zhì)品”與“抽到合格品或次品”是對立事件,所以在該產(chǎn)品中任抽一件,則抽到優(yōu)質(zhì)品的概率為.故答案為【題目點撥】本題主要考查對立事件的概率公式,熟記對立事件的概念及概率計算公式即可求解,屬于基礎(chǔ)題型.13、【解題分析】
根據(jù)得,再利用正弦定理得,化簡得出角的大小。再根據(jù)三角形內(nèi)角和即可得B.【題目詳解】根據(jù)題意,由正弦定理可得則所以答案為?!绢}目點撥】本題主要考查向量與三角形正余弦定理的綜合應用,屬于基礎(chǔ)題。14、1【解題分析】
根據(jù)已知兩項求出數(shù)列的公比,然后根據(jù)等比數(shù)列的通項公式進行求解即可.【題目詳解】∵a1=1,a5=4∴公比∴∴該等比數(shù)列的通項公式a3=11=1故答案為:1.【題目點撥】本題主要考查了等比數(shù)列的通項公式,一般利用基本量的思想,屬于基礎(chǔ)題.15、1【解題分析】
首先根據(jù)、即可求出和,從而求出?!绢}目詳解】,①,②①②得,,即,∴,即,∴,故答案為:1.【題目點撥】本題主要考查了解方程,以及等差數(shù)列的性質(zhì)和前項和。其中等差數(shù)列的性質(zhì):若則比較???,需理解掌握。16、.【解題分析】試題分析:從中任取3個不同的數(shù),有,,,,,,,,,共10種,其中只有為勾股數(shù),故這3個數(shù)構(gòu)成一組勾股數(shù)的概率為.考點:用列舉法求隨機事件的概率.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或;(2);(3);【解題分析】試題分析:(1)時,由已知得到;(2)方程有實數(shù)解即a在的值域上,(3)根據(jù)二次函數(shù)的性質(zhì)列不等式組得出tana的范圍,利用根與系數(shù)的關(guān)系得出α+β的最值.試題解析:(1),或;(2)(3)因為方程在區(qū)間上有兩個相異的解、,所以18、(1);(2),.【解題分析】
(1)根據(jù)最小正周期可求得;代入點,結(jié)合的范圍可求得,從而得到函數(shù)解析式;(2)令,解出的范圍即為所求的單調(diào)遞增區(qū)間.【題目詳解】(1)最小正周期過點,,解得:,的解析式為:(2)由,得:,的單調(diào)遞增區(qū)間為:,【題目點撥】本題考查根據(jù)三角函數(shù)性質(zhì)求解函數(shù)解析式、正弦型函數(shù)單調(diào)區(qū)間的求解;關(guān)鍵是能夠采用整體對應的方式來利用正弦函數(shù)的最值和單調(diào)區(qū)間求解正弦型函數(shù)的解析式和單調(diào)區(qū)間.19、(1);(2)m的取值集合或}(3)存在,【解題分析】
(1)利用奇函數(shù)的性質(zhì)得到關(guān)于實數(shù)k的方程,解方程即可,注意驗證所得的結(jié)果;(2)結(jié)合函數(shù)的單調(diào)性和函數(shù)的奇偶性脫去f的符號即可;(3)可得,即可得:即可.【題目詳解】(1)由奇函數(shù)的性質(zhì)可得:,解方程可得:.此時,滿足,即為奇函數(shù).的解析式為:;(2)函數(shù)的解析式為:,結(jié)合指數(shù)函數(shù)的性質(zhì)可得:在區(qū)間內(nèi)只有一個解.即:在區(qū)間內(nèi)只有一個解.(i)當時,,符合題意.(ii)當時,只需且時,,此時,符合題意綜上,m的取值集合或}(3)函數(shù)為奇函數(shù)關(guān)于對稱又當且僅當時等號成立所以存在正整數(shù)n,使不得式對一切均成立.【題目點撥】本題考查了復合型指數(shù)函數(shù)綜合,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學運算的能力,屬于難題.20、(1);(2).【解題分析】試題分析:(1)利用等差等比基本公式,計算數(shù)列的通項公式;(2)利用裂項相消法求和.試題解析:(1)設(shè)公差為,因為,,成等數(shù)列,所以,即,解得,或(舍去),所以.(2)由(1)知,所以,,所以.21、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家電產(chǎn)品保險合同
- 房屋買賣合同的合同履行與監(jiān)督
- 貨品倉儲合同模板
- 標準廠房租賃合同
- 版育嬰師服務合同解析
- 企業(yè)人力資源管理體系建設(shè)方案設(shè)計
- 心理學效應與行為學作業(yè)指導書
- 稅務籌劃與避稅指南
- 《7 合成之法-為錄音添加背景音樂》教學實錄-2023-2024學年清華版(2012)信息技術(shù)六年級上冊
- 消防設(shè)計及技術(shù)咨詢驗收服務合同
- 2024年秋季學期新魯教版(五四制)六年級上冊英語課件 Unit6 Section B (2a-Reflecting)(第5課時)
- GB/Z 44314-2024生物技術(shù)生物樣本保藏動物生物樣本保藏要求
- 中醫(yī)與輔助生殖
- 2024年一年級上冊科學第一單元基礎(chǔ)專項練習(含答案)
- 人工智能賦能語文教育的創(chuàng)新發(fā)展研究
- 六年級下冊美術(shù)教學設(shè)計《第11課青花瓷韻》浙美版
- 2024至2030年中國物業(yè)服務行業(yè)市場發(fā)展監(jiān)測及投資潛力預測報告
- 服務器行業(yè)市場分析報告2024年
- 茶葉風味科學Ⅱ智慧樹知到期末考試答案章節(jié)答案2024年浙江大學
- 海上海新城地下室(車庫)施工組織設(shè)計
- 電競解說智慧樹知到期末考試答案章節(jié)答案2024年重慶對外經(jīng)貿(mào)學院
評論
0/150
提交評論