重慶市實驗學校2023-2024學年九年級數學第一學期期末經典模擬試題含解析_第1頁
重慶市實驗學校2023-2024學年九年級數學第一學期期末經典模擬試題含解析_第2頁
重慶市實驗學校2023-2024學年九年級數學第一學期期末經典模擬試題含解析_第3頁
重慶市實驗學校2023-2024學年九年級數學第一學期期末經典模擬試題含解析_第4頁
重慶市實驗學校2023-2024學年九年級數學第一學期期末經典模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶市實驗學校2023-2024學年九年級數學第一學期期末經典模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.拋物線的頂點坐標是()A.(2,9) B.(2,-9)C.(-2,9) D.(-2,-9)2.已知二次函數的圖象如圖所示,有下列結論:①;②;③;④⑤;其中正確結論的個數是()A. B. C. D.3.下列大學校徽內部圖案中可以看成由某一個基本圖形通過平移形成的是()A. B. C. D.4.一次函數y=﹣3x﹣2的圖象和性質,表述正確的是()A.y隨x的增大而增大 B.在y軸上的截距為2C.與x軸交于點(﹣2,0) D.函數圖象不經過第一象限5.關于x的一元二次方程x2+mx+m2﹣7=0的一個根是﹣2,則m的值可以是()A.﹣1 B.3 C.﹣1或3 D.﹣3或16.若|m|=5,|n|=7,m+n<0,則m﹣n的值是()A.﹣12或﹣2 B.﹣2或12 C.12或2 D.2或﹣127.已知拋物線y=x2-8x+c的頂點在x軸上,則c的值是()A.16 B.-4 C.4 D.88.若關于的一元二次方程的一個根是,則的值是()A.2011 B.2015 C.2019 D.20209.如圖,菱形ABCD的邊AD⊥y軸,垂足為點E,頂點A在第二象限,頂點B在y軸的正半軸上,反比例函數y=(k≠0,x>0)的圖象同時經過頂點C,D.若點C的橫坐標為5,BE=3DE,則k的值為()A. B. C.3 D.510.如圖,在△ABC中,點D、E分別在AB、AC邊上,DE與BC不平行,那么下列條件中,不能判斷△ADE∽△ACB的是()A.∠ADE=∠C B.∠AED=∠B C. D.11.如圖,已知矩形ABCD的頂點A,D分別落在x軸、y軸上,OD=2OA=6,AD:AB=3:1,則點C的坐標是()A.(2,7) B.(3,7) C.(3,8) D.(4,8)12.下表是一組二次函數的自變量x與函數值y的對應值:

1

1.1

1.2

1.3

1.4

-1

-0.49

0.04

0.59

1.16

那么方程的一個近似根是()A.1 B.1.1 C.1.2 D.1.3二、填空題(每題4分,共24分)13.一枚質地均勻的正方體骰子,其六個面上分別刻有1、2、3、4、5、6六個數字,投擲這個骰子一次,則向上一面的數字小于3的概率是__________.14.拋物線y=x2+3與y軸的交點坐標為__________.15.如圖,中,,,,是上一個動點,以為直徑的⊙交于,則線段長的最小值是_________.16.在平面直角坐標系中,正方形ABCD的位置如圖所示,點的坐標為,點的坐標為,延長交軸于點,作正方形,延長交軸于點,作正方形,…按這樣的規(guī)律進行下去,第個正方形的面積為_____________.17.如圖,在中,,,,則的長為________.18.汽車剎車后行駛的距離(單位:)關于行駛的時間(單位:)的函數解析式是.汽車剎車后到停下來前進了______.三、解答題(共78分)19.(8分)如圖,在平面直角坐標系中,△ABC的三個頂點的坐標分別為A(-3,1),B(-1,3),C(0,1).(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后的△A1B1C1,并寫出A1,B1的坐標;(2)平移△ABC,若點A的對應點A2的坐標為(-5,-3),畫出平移后的△A2B2C2,并寫出B2,C2的坐標;(3)若△A2B2C2和△A1B1C1關于點P中心對稱,請直接寫出對稱中心P的坐標.20.(8分)已知,如圖,是的直徑,平分交平點.過點的切線交的延長線于.求證:.21.(8分)解不等式組:22.(10分)2018年非洲豬瘟疫情暴發(fā)后,2019年豬肉價格不斷走高,引起了民眾與政府的高度關注,據統(tǒng)計:2019年12月份豬肉價格比2019年年初上漲了30%,某市民2019年12月3日在某超市購買1千克豬肉花了52元.(1)問:2019年年初豬肉的價格為每千克多少元?(2)某超市將進貨價為每千克39元的豬肉,按2019年12月3日價格出售,平均一天能銷售出100千克,經調查表明:豬肉的售價每千克下降1元,其日銷售量就增加10千克,超市為了實現銷售豬肉每天有1320元的利潤,并且盡可能讓顧客得到實惠,豬肉的售價應該下降多少元?23.(10分)如圖1,已知二次函數y=mx2+3mx﹣m的圖象與x軸交于A,B兩點(點A在點B的左側),頂點D和點B關于過點A的直線l:y=﹣x﹣對稱.(1)求A、B兩點的坐標及二次函數解析式;(2)如圖2,作直線AD,過點B作AD的平行線交直線1于點E,若點P是直線AD上的一動點,點Q是直線AE上的一動點.連接DQ、QP、PE,試求DQ+QP+PE的最小值;若不存在,請說明理由:(3)將二次函數圖象向右平移個單位,再向上平移3個單位,平移后的二次函數圖象上存在一點M,其橫坐標為3,在y軸上是否存在點F,使得∠MAF=45°?若存在,請求出點F坐標;若不存在,請說明理由.24.(10分)如圖,中,點在邊上,,將線段繞點旋轉到的位置,使得,連接,與交于點(1)求證:;(2)若,,求的度數.25.(12分)如圖,直線y=x+b與雙曲線y=(k為常數,k≠0)在第一象限內交于點A(1,2),且與x軸、y軸分別交于B,C兩點.(1)求直線和雙曲線的解析式;(2)點P在x軸上,且△BCP的面積等于2,求P點的坐標.26.某居民小區(qū)要在一塊一邊靠墻的空地上修建一個矩形花園ABCD,花園的一邊靠墻,另三邊用總長為32m的柵欄圍成(如圖所示).如果墻長16m,滿足條件的花園面積能達到120m2嗎?若能,求出此時BC的值;若不能,說明理由.

參考答案一、選擇題(每題4分,共48分)1、A【分析】把拋物線解析式化為頂點式即可求得答案.【詳解】∵,∴頂點坐標為(2,9).故選:A.【點睛】本題主要考查了二次函數的性質,掌握二次函數的頂點式是解答此題的關鍵,即在中,對稱軸為x=h,頂點坐標為(h,k).2、B【分析】利用特殊值法求①和③,根據圖像判斷出a、b和c的值判斷②和④,再根據對稱軸求出a和b的關系,再用特殊值法判斷⑤,即可得出答案.【詳解】令x=-1,則y=a-b+c,根據圖像可得,當x=-1時,y<0,所以a-b+c<0,故①錯誤;由圖可得,a>0,b<0,c<0,所以abc>0,a-c>0,故②④正確;令x=-2,則y=4a-2b+c,根據圖像可得,當x=-2時,y>0,所以4a-2b+c>0,故③正確;,所以-b=2a,∴a-b+c=a+2a+c=3a+c<0,故⑤錯誤;故答案選擇B.【點睛】本題考查的是二次函數,難度偏高,需要熟練掌握二次函數的圖像與性質.3、C【分析】由平移的性質,分別進行判斷,即可得到答案.【詳解】解:由平移的性質可知,C選項的圖案是通過平移得到的;A、B、D中的圖案不是平移得到的;故選:C.【點睛】本題考查了平移的性質,解題的關鍵是掌握圖案的平移進行解題.4、D【解析】根據一次函數的圖象和性質,依次分析各個選項,選出正確的選項即可.【詳解】A.一次函數y=﹣3x﹣2的圖象y隨著x的增大而減小,即A項錯誤;B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y軸的截距為﹣2,即B項錯誤;C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x,即與x軸交于點(,0),即C項錯誤;D.函數圖象經過第二三四象限,不經過第一象限,即D項正確.故選D.【點睛】本題考查了一次函數圖象上點的坐標特征,一次函數的性質,正確掌握一次函數圖象的增減性和一次函數的性質是解題的關鍵.5、C【分析】先把x=﹣2代入方程x2+mx+m2﹣7=0得4﹣2m+m2﹣7=0,然后解關于m的方程即可.【詳解】解:把x=﹣2代入方程x2+mx+m2﹣7=0得4﹣2m+m2﹣7=0,解得m=﹣1或1.故選:C.【點睛】本題主要考察一元一次方程的解及根與系數的關系,解題關鍵是熟練掌握計算法則.6、C【分析】根據題意,利用絕對值的意義求出m與n的值,再代入所求式子計算即可.【詳解】解:∵|m|=5,|n|=7,且m+n<0,∴m=5,n=﹣7;m=﹣5,n=﹣7,可得m﹣n=12或2,則m﹣n的值是12或2.故選:C.【點睛】本題考查了絕對值的意義,掌握絕對值的意義求值是關鍵.7、A【分析】頂點在x軸上,所以頂點的縱坐標是0.據此作答.【詳解】∵二次函數y=-8x+c的頂點的橫坐標為x=-

=

-=4,∵頂點在x軸上,

∴頂點的坐標是(4,0),

把(4,0)代入y=-8x+c中,得:16-32+c=0,解得:c=16,故答案為A【點睛】本題考查求拋物線頂點縱坐標的公式,比較簡單.8、C【分析】根據方程解的定義,求出a-b,利用作圖代入的思想即可解決問題.【詳解】∵關于x的一元二次方程的解是x=?1,∴a?b+4=0,∴a?b=-4,∴2015?(a?b)=2215?(-4)=2019.故選C.【點睛】此題考查一元二次方程的解,解題關鍵在于掌握運算法則.9、B【分析】由已知,可得菱形邊長為5,設出點D坐標,即可用勾股定理構造方程,進而求出k值.【詳解】過點D做DF⊥BC于F,由已知,BC=5,∵四邊形ABCD是菱形,∴DC=5,∵BE=3DE,∴設DE=x,則BE=3x,∴DF=3x,BF=x,FC=5-x,在Rt△DFC中,DF2+FC2=DC2,∴(3x)2+(5-x)2=52,∴解得x=1,∴DE=1,FD=3,設OB=a,則點D坐標為(1,a+3),點C坐標為(5,a),∵點D、C在雙曲線上,∴1×(a+3)=5a,∴a=,∴點C坐標為(5,)∴k=.故選B.【點睛】本題是代數幾何綜合題,考查了數形結合思想和反比例函數k值性質.解題關鍵是通過勾股定理構造方程.10、C【解析】根據已知條件知∠A=∠A,再添加選項中的條件依次判斷即可得到答案.【詳解】解:∵∠A=∠A,∴添加∠ADE=∠C,△ADE∽△ACB,故A正確;∴添加∠AED=∠B,△ADE∽△ACB,故B正確;∴添加,△ADE∽△ACB,故D正確;故選:C.【點睛】此題考查相似三角形的判定定理,已知一個角相等時,再確定另一組角相等或是構成已知角的兩邊對應成比例,即可證明兩個三角形相似.11、A【解析】過C作CE⊥y軸于E,∵四邊形ABCD是矩形,∴CD=AB,∠ADC=90°,∴∠ADO+∠CDE=∠CDE+∠DCE=90°,∴∠DCE=∠ADO,∴△CDE∽△ADO,∴,∵OD=2OA=6,AD:AB=3:1,∴OA=3,CD:AD=,∴CE=OD=2,DE=OA=1,∴OE=7,∴C(2,7),故選A.12、C【詳解】解:觀察表格得:方程x2+3x﹣5=0的一個近似根為1.2,故選C考點:圖象法求一元二次方程的近似根.二、填空題(每題4分,共24分)13、【分析】利用公式直接計算.【詳解】解:這六個數字中小于3的有1和2兩種情況,則P(向上一面的數字小于3)=.故答案為:【點睛】本題考查概率的計算.14、(0,3)【分析】由于拋物線與y軸的交點的橫坐標為0,代入解析式即可求出縱坐標.【詳解】解:當x=0時,y=3,則拋物線y=x2+3與y軸交點的坐標為(0,3),故答案為(0,3).【點睛】此題主要考查了拋物線與坐標軸的交點坐標與解析式的關系,利用解析式中自變量為0即可求出與y軸交點的坐標.15、【分析】連接AE,可得∠AED=∠BEA=90°,從而知點E在以AB為直徑的⊙Q上,繼而知點Q、E、C三點共線時CE最小,根據勾股定理求得QC的長,即可得線段CE的最小值.【詳解】解:如圖,連接AE,則∠AED=∠BEA=90°(直徑所對的圓周角等于90°),

∴點E在以AB為直徑的⊙Q上,

∵AB=4,

∴QA=QB=2,

當點Q、E、C三點共線時,QE+CE=CQ(最短),

而QE長度不變?yōu)?,故此時CE最小,

∵AC=5,

∴,

故答案為:.【點睛】本題考查了圓周角定理和勾股定理的綜合應用,解決本題的關鍵是確定E點運動的軌跡,從而把問題轉化為圓外一點到圓上一點的最短距離問題.16、【分析】推出AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,求出∠ADO=∠BAA1,證△DOA∽△ABA1,得出,求出AB,BA1,求出邊長A1C=,求出面積即可;求出第2個正方形的邊長是,求出面積,再求出第3個正方形的面積;依此類推得出第n個正方形的邊長,求出面積即可.【詳解】∵四邊形ABCD是正方形,

∴AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,

∴∠ADO+∠DAO=90°,∠DAO+∠BAA1=90°,

∴∠ADO=∠BAA1,

∵∠DOA=∠ABA1,

∴△DOA∽△ABA1,

∴,

∵AB=AD=∴BA1=∴第2個正方形A1B1C1C的邊長A1C=A1B+BC=,面積是;同理第3個正方形的邊長是面積是;第4個正方形的邊長是,面積是…,

第n個正方形的邊長是,面積是故答案為:【點睛】本題考查了正方形的性質,相似三角形的性質和判定,勾股定理的應用,解此題的關鍵是根據計算的結果得出規(guī)律,題目比較好,但是一道比較容易出錯的題目17、【分析】過點作的垂線,則得到兩個直角三角形,根據勾股定理和正余弦公式,求的長.【詳解】過作于點,設,則,因為,所以,則由勾股定理得,因為,所以,則.則.【點睛】本題考查勾股定理和正余弦公式的運用,要學會通過作輔助線得到特殊三角形,以便求解.18、6【分析】根據二次函數的解析式可得出汽車剎車時時間,將其代入二次函數解析式中即可得出s的值.【詳解】解:根據二次函數解析式=-6(t2-2t+1-1)=-6(t-1)2+6可知,汽車的剎車時間為t=1s,當t=1時,=12×1-6×12=6(m)故選:6【點睛】本題考查了二次函數性質的應用,理解透題意是解題的關鍵.三、解答題(共78分)19、(1)見解析,A1(3,1),B1(1,-1).(2)見解析,B2(-3,-1),C2(-2,-3).(3)(-1,-1)【分析】(1)依據以點C為旋轉中心旋轉180°,即可畫出旋轉后的△A1B1C1;

(2)依據點A的對應點A2的坐標為(?5,?3),即可畫出平移后的△A2B2C2;

(3)依據中心對稱的性質,即可得到對稱中心P的坐標.【詳解】(1)如圖所示,△A1B1C1為所作三角形,A1(3,1),B1(1,-1).(2)如圖所示,△A2B2C2為所作三角形,B2(-3,-1),C2(-2,-3).(3)對稱中心P的坐標為(-1,-1).【點睛】本題主要考查了利用平移變換以及旋轉變換進行作圖,根據旋轉的性質可知,對應角都相等都等于旋轉角,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉后的圖形.20、詳見解析.【分析】連接,由切線的性質可知∠ODE=90°,證OD∥AE即可解決問題;【詳解】連接.是的切線,,,,,平分,,,,,,.【點睛】本題考查切線的性質,平行線的判定和性質等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.21、【分析】由題意分別求出各不等式的解集,再求出其公共解集即可得到不等式組的解集.【詳解】解:,由①得,由②得,故不等式組的解集為:.【點睛】本題考查的是解一元一次不等式組,熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.22、(3)今年年初豬肉的價格為每千克3元;(3)豬肉的售價應該下降3元.【分析】(3)設3039年年初豬肉的價格為每千克x元,根據題意列出方程,解方程即可;(3)根據題意利用利潤=每千克的利潤×數量列出方程,解方程即可解決問題.【詳解】解:(3)設今年年初豬肉的價格為每千克x元,依題意,得:(3+30%)x=53,解得:x=3.答:今年年初豬肉的價格為每千克3元.(3)設豬肉的售價應該下降y元,則每日可售出(300+30y)千克,依題意,得:(53﹣39﹣y)(300+30y)=3330,整理,得:y3﹣3y+3=0,解得:y3=3,y3=3.∵讓顧客得到實惠,∴y=3.答:豬肉的售價應該下降3元.【點睛】本題主要考查一元一次方程及一元二次方程的應用,讀懂題意列出方程是解題的關鍵.23、(1)A(﹣,0),B(,0);拋物線解析式y(tǒng)=x2+x﹣;(2)12;(3)(0,),(0,﹣)【分析】(1)在y=mx2+3mx﹣m中令y=0,解方程求得x的值即可求得A、B的坐標,繼而根據已知求出點D的坐標,把點D坐標代入函數解析式y(tǒng)=mx2+3mx﹣m利用待定系數法求得m即可得函數解析式;(2)先求出直線AD解析式,再根據直線BE∥AD,求得直線BE解析式,繼而可得點E坐標,如圖2,作點P關于AE的對稱點P',作點E關于x軸的對稱點E',根據對稱性可得PQ=P'Q,PE=EP'=P'E',從而有DQ+PQ+PE=DQ+P'Q+P'E',可知當D,Q,E'三點共線時,DQ+PQ+PE值最小,即DQ+PQ+PE最小值為DE',根據D、E'坐標即可求得答案;(3)分情況進行討論即可得答案.【詳解】(1)∵令y=0,∴0=mx2+3mx﹣m,∴x1=,x2=﹣,∴A(﹣,0),B(,0),∴頂點D的橫坐標為﹣,∵直線y=﹣x﹣與x軸所成銳角為30°,且D,B關于y=﹣x﹣對稱,∴∠DAB=60°,且D點橫坐標為﹣,∴D(﹣,﹣3),∴﹣3=m﹣m﹣m,∴m=,∴拋物線解析式y(tǒng)=x2+x﹣;(2)∵A(﹣,0),D(﹣,﹣3),∴直線AD解析式y(tǒng)=﹣x﹣,∵直線BE∥AD,∴直線BE解析式y(tǒng)=﹣x+,∴﹣x﹣=﹣x+,∴x=,∴E(,﹣3),如圖2,作點P關于AE的對稱點P',作點E關于x軸的對稱點E',根據對稱性可得PQ=P'Q,PE=EP'=P'E',∴DQ+PQ+PE=DQ+P'Q+P'E',∴當D,Q,E'三點共線時,DQ+PQ+PE值最小,即DQ+PQ+PE最小值為DE',∵D(﹣,﹣3),E'(,3),∴DE'=12,∴DQ+PQ+PE最小值為12;(3)∵拋物線y=(x+)2﹣3圖象向右平移個單位,再向上平移3個單位,∴平移后解析式y(tǒng)=x2,當x=3時,y=3,∴M(3,3),如圖3若以AM為直角邊,點M是直角頂點,在AM上方作等腰直角△AME,則∠EAM=45°,直線AE交y軸于F點,作MG⊥x軸,EH⊥MG,則△EHM≌△AMG,∵A(﹣,0),M(3,3),∴E(3﹣3,3+),∴直線AE解析式:y=x+,∴F(0,),若以AM為直角邊,點M是直角頂點,在AM上方作等腰直角△AME,同理可得:F(0,﹣).【點睛】本題考查了待定系數法、軸對稱的性質、拋物線的平移、線段和的最小值問題、全等三角形的判定與性質等,綜合性較強,有一定的難度,準確添加輔助線、熟練應用相關知識是解題的關鍵.24、(1)證明見解析;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論