版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省嘉興市桐鄉(xiāng)高級中學(xué)2023-2024學(xué)年數(shù)學(xué)高一上期末考試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.已知函數(shù),則的解析式是()A. B.C. D.2.函數(shù)的定義域為D,若滿足;(1)在D內(nèi)是單調(diào)函數(shù);(2)存在,使得在上的值域也是,則稱為閉函數(shù);若是閉函數(shù),則實數(shù)的取值范圍是()A. B.C. D.3.三個數(shù)大小的順序是A. B.C. D.4.設(shè)函數(shù)若是奇函數(shù),則()A. B.C. D.15.用二分法求方程的近似解,求得的部分函數(shù)值數(shù)據(jù)如下表所示:121.51.6251.751.8751.8125-63-2.625-1.459-0.141.34180.5793則當精確度為0.1時,方程的近似解可取為A. B.C. D.6.已知,則()A. B.C.5 D.-57.函數(shù)的定義域為()A.B.且C.且D.8.若函數(shù)的定義域是,則函數(shù)的定義域是()A. B.C. D.9.實數(shù)滿足,則下列關(guān)系正確的是A. B.C. D.10.已知是以為圓心的圓上的動點,且,則A. B.C. D.11.函數(shù)的單調(diào)遞減區(qū)間為A. B.C. D.12.已知是R上的奇函數(shù),且對,有,當時,,則()A.40 B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知角的終邊過點(1,-2),則________14.設(shè),,則的取值范圍是______.15.已知函數(shù)滿足,則________.16.已知函數(shù)的圖象恒過定點A,若點A在一次函數(shù)的圖象上,其中,則的最小值為_____________.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知.(1)求函數(shù)的最小正周期及單調(diào)增區(qū)間;(2)若,,求的值.18.已知若,求方程的解;若關(guān)于x的方程在區(qū)間上有兩個不相等的實根、:求實數(shù)k的取值范圍;證明:19.已知函數(shù)的最小值為0(1)求a的值:(2)若在區(qū)間上的最大值為4,求m的最小值20.已知函數(shù).(1)當時,求函數(shù)在區(qū)間上的值域;(2)求函數(shù)在區(qū)間上的最大值.21.已知函數(shù)(,)為奇函數(shù),且相鄰兩對稱軸間的距離為(1)當時,求的單調(diào)遞減區(qū)間;(2)將函數(shù)的圖象沿軸方向向右平移個單位長度,再把橫坐標縮短到原來的(縱坐標不變),得到函數(shù)的圖象.當時,求函數(shù)的值域22.如圖,在直三棱柱ABC-A1B1C1中,D、E分別為AB、BC的中點,點F在側(cè)棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求證:(1)直線A1C1∥平面B1DE;(2)平面A1B1BA⊥平面A1C1F.
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、A【解析】由于,所以.2、C【解析】先判定函數(shù)的單調(diào)性,然后根據(jù)條件建立方程組,轉(zhuǎn)化為使方程有兩個相異的非負實根,最后建立關(guān)于的不等式,解之即可.【詳解】因為函數(shù)是單調(diào)遞增函數(shù),所以即有兩個相異非負實根,所以有兩個相異非負實根,令,所以有兩個相異非負實根,令則,解得.故選.【點睛】本題考查了函數(shù)與方程,二次方程實根的分布,轉(zhuǎn)化法,屬于中檔題.3、B【解析】根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性知:,即;,即;,即;所以,故正確答案為選項B考點:指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性;間接比較法4、A【解析】先求出的值,再根據(jù)奇函數(shù)的性質(zhì),可得到的值,最后代入,可得到答案.【詳解】∵奇函數(shù)故選:A【點睛】本題主要考查利用函數(shù)的奇偶性求值的問題,屬于基礎(chǔ)題.5、C【解析】利用零點存在定理和精確度可判斷出方程的近似解.【詳解】根據(jù)表中數(shù)據(jù)可知,,由精確度為可知,,故方程的一個近似解為,選C.【點睛】不可解方程的近似解應(yīng)該通過零點存在定理來尋找,零點的尋找依據(jù)二分法(即每次取區(qū)間的中點,把零點位置精確到原來區(qū)間的一半內(nèi)),最后依據(jù)精確度四舍五入,如果最終零點所在區(qū)間的端點的近似值相同,則近似值即為所求的近似解.6、C【解析】令,代入直接計算即可.【詳解】令,即,則,故選:C.7、C【解析】根據(jù)給定函數(shù)有意義直接列出不等式組,解不等式組作答.【詳解】依題意,,解得且,所以的定義域為且.故選:C8、C【解析】由題可列出,可求出【詳解】的定義域是,在中,,解得,故的定義域為.故選:C.9、A【解析】根據(jù)指數(shù)和對數(shù)的運算公式得到【詳解】=故A正確.故B不正確;故C,D不正確.故答案為A.【點睛】這個題目考查了指數(shù)和對數(shù)的公式的互化,以及換底公式的應(yīng)用,較為簡單.10、A【解析】根據(jù)向量投影的幾何意義得到結(jié)果即可.【詳解】由A,B是以O(shè)為圓心的圓上的動點,且,根據(jù)向量的點積運算得到=||?||?cos,由向量的投影以及圓中垂徑定理得到:||?cos即OB在AB方向上的投影,等于AB的一半,故得到=||?||?cos.故選A【點睛】本題考查向量的數(shù)量積公式的應(yīng)用,以及向量投影的應(yīng)用.平面向量數(shù)量積公式的應(yīng)用主要有兩種形式,一是,二是,主要應(yīng)用以下幾個方面:(1)求向量的夾角,(此時往往用坐標形式求解);(2)求投影,在上的投影是;(3)向量垂直則;(4)求向量的模(平方后需求).11、C【解析】由冪函數(shù)的性質(zhì)知,函數(shù)的圖像以原點為對稱中心,在均是減函數(shù)故答案為C12、C【解析】根據(jù)已知和對數(shù)運算得,,再由指數(shù)運算和對數(shù)運算法則可得選項.【詳解】因為,,故,.∵,故.故選:C【點睛】關(guān)鍵點點睛:解決本題類型的問題的關(guān)鍵在于:1、由已知得出抽象函數(shù)的周期;2、根據(jù)函數(shù)的周期和對數(shù)運算法則將自變量轉(zhuǎn)化到已知范圍中,可求得函數(shù)值.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】由三角函數(shù)的定義以及誘導(dǎo)公式求解即可.【詳解】的終邊過點(1,-2),故答案為:14、【解析】由已知求得,然后應(yīng)用誘導(dǎo)公式把求值式化為一個角的一個三角函數(shù)形式,結(jié)合正弦函數(shù)性質(zhì)求得范圍【詳解】,,所以,所以,,,,故答案為:15、6【解析】由得出方程組,求出函數(shù)解析式即可.【詳解】因為函數(shù)滿足,所以,解之得,所以,所以.【點睛】本題主要考查求函數(shù)的值,屬于基礎(chǔ)題型.16、4【解析】由題意可知定點A(1,1),所以m+n=1,因為,所以,當時,的最小值為4.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)最小正周期,單調(diào)增區(qū)間為,;(2).【解析】(1)將函數(shù)解析式化簡為,可得周期為;將看作一個整體代入正弦函數(shù)的增區(qū)間可得函數(shù)的單調(diào)增區(qū)間為,.(2)由(1)可得,結(jié)合條件得到,進而可得,于是,,最后根據(jù)兩角差的正弦公式可得結(jié)果試題解析:(1)∴函數(shù)的最小正周期.由,,得,,所以函數(shù)的單調(diào)增區(qū)間為,.(2)由(1)得,又,∴,∵,∴,∴,,∴.點睛:(1)解決三角函數(shù)問題時通常將所給的函數(shù)化簡為的形式后,將看作一個整體,并結(jié)合正弦函數(shù)的相關(guān)性質(zhì)求解.在解題中要注意整體代換思想的運用(2)對于給出某些角的三角函數(shù)值,求另外一些角的三角函數(shù)值的問題,解題關(guān)鍵在于“變角”,即用已知的角表示所求的角,使其角相同或具有某種關(guān)系18、(1)(2),見解析【解析】當時,分類討論,去掉絕對值,直接進行求解,即可得到答案討論兩個根、的范圍,結(jié)合一元二次方程根與系數(shù)之間的關(guān)系進行轉(zhuǎn)化求解【詳解】當時,,當時,,由,得,得舍或;當時,,由得舍;故當時,方程的解是不妨設(shè),因為,若、,與矛盾,若、,與是單調(diào)函數(shù)矛盾,則;則…①…②由①,得:,由②,得:;的取值范圍是;聯(lián)立①、②消去k得:,即,即,則,,,即【點睛】本題主要考查了函數(shù)與方程的應(yīng)用,根據(jù)條件判斷根的范圍,以及利用一元二次方程與一次方程的性質(zhì)進行轉(zhuǎn)化是解決本題的關(guān)鍵,著重考查了分析問題和解答問題的能力,試題綜合性較強,屬于中檔試題19、(1)2(2)【解析】(1)根據(jù)輔助角公式化簡,由正弦型函數(shù)的最值求解即可;(2)由所給自變量的范圍及函數(shù)由最大值4,確定即可求解.【小問1詳解】,,解得.【小問2詳解】由(1)知,當時,,,,解得,.20、(1)(2)【解析】(1)利用二次函數(shù)的圖象和性質(zhì)求值域;(2)討論對稱軸與區(qū)間中點的大小關(guān)系,即可得答案;【詳解】(1)由題意,當時,,又,對稱軸為,,離對稱軸較遠,,的值域為.(2)由題意,二次函數(shù)開口向上,對稱軸為,由數(shù)形結(jié)合知,(i)當,即時,;(ii)當,即時,,綜上:.【點睛】本題考查一元二次函數(shù)的值域求解,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力,求解時注意拋物線的開口方向及對稱軸與區(qū)間的位置關(guān)系.21、(1),](2)值域為[,]【解析】(1)利用三角恒等變換化簡的解析式,根據(jù)條件,可求出周期和,結(jié)合奇函數(shù)性質(zhì),求出,再用整體代入法求出內(nèi)的遞減區(qū)間;(2)利用函數(shù)的圖象變換規(guī)律,求出的解析式,再利用正弦函數(shù)定義域,即可求出時的值域.【詳解】解:(1)由題意得,因相鄰兩對稱軸之間距離為,所以,又因為函數(shù)為奇函數(shù),所以,∴,因為,所以故函數(shù)令.得.令得,因為,所以函數(shù)的單調(diào)遞減區(qū)間為,](2)由題意可得,因為,所以所以,.即函數(shù)的值域為[,]【點睛】本題主要考查正弦函數(shù)在給定區(qū)間內(nèi)的單調(diào)性和值域,包括周期性,奇偶性,單調(diào)性和最值,還涉及三角函數(shù)圖像的平移伸縮和三角恒等變換中的輔助角公式.22、證明過程詳見解析【解析】(1)先證明DE∥A1C1,即證直線A1C1∥平面B1DE.(2)先證明DE⊥平面AA1B1B,再證明A1F⊥平面B1DE,即證平面AA1B1B⊥平面A1C1F.【詳解】證明:(1)∵D,E分別為AB,BC的中點,∴DE為△ABC的中位線,∴DE∥AC,∵ABC-A1B1C1為棱柱,∴AC∥A1C1,∴DE∥A1C1,∵DE?平面B1DE,且A1C1?平面B1DE,∴A1C1∥平面B1DE;(2)在ABC-A1B1C1的直棱柱中,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度民房租賃法律咨詢與維權(quán)合同
- 二零二五年度會議場地綠化及布置服務(wù)保障合同
- 二零二五年度內(nèi)衣品牌國際市場拓展與海外銷售合同
- 2025年度大型活動安保團隊聘用合同范本
- 2025版鋁合金門窗安裝施工合同2篇
- 2025年度虛擬現(xiàn)實技術(shù)研發(fā)中心個人技術(shù)合作合同3篇
- 二零二五年度智能門禁系統(tǒng)研發(fā)與銷售合同4篇
- 湖北省宜昌市高三第二次調(diào)考試題語文試題(含答案)
- 2025年度個人股權(quán)收益分配合同范本3篇
- 2025年度個人合伙人股權(quán)解除合同范本4篇
- 2019版新人教版高中英語必修+選擇性必修共7冊詞匯表匯總(帶音標)
- 新譯林版高中英語必修二全冊短語匯總
- 基于自適應(yīng)神經(jīng)網(wǎng)絡(luò)模糊推理系統(tǒng)的游客規(guī)模預(yù)測研究
- 河道保潔服務(wù)投標方案(完整技術(shù)標)
- 品管圈(QCC)案例-縮短接臺手術(shù)送手術(shù)時間
- 精神科病程記錄
- 閱讀理解特訓(xùn)卷-英語四年級上冊譯林版三起含答案
- 清華大學(xué)考博英語歷年真題詳解
- 人教版三年級上冊口算題(全冊完整20份 )
- 屋面及防水工程施工(第二版)PPT完整全套教學(xué)課件
- 2023年高一物理期末考試卷(人教版)
評論
0/150
提交評論