16.3++二次根式的加減+++課件++2023-2024學(xué)年人教版數(shù)學(xué)八年級(jí)下冊(cè)_第1頁(yè)
16.3++二次根式的加減+++課件++2023-2024學(xué)年人教版數(shù)學(xué)八年級(jí)下冊(cè)_第2頁(yè)
16.3++二次根式的加減+++課件++2023-2024學(xué)年人教版數(shù)學(xué)八年級(jí)下冊(cè)_第3頁(yè)
16.3++二次根式的加減+++課件++2023-2024學(xué)年人教版數(shù)學(xué)八年級(jí)下冊(cè)_第4頁(yè)
16.3++二次根式的加減+++課件++2023-2024學(xué)年人教版數(shù)學(xué)八年級(jí)下冊(cè)_第5頁(yè)
已閱讀5頁(yè),還剩40頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第十六章二次根式16.3二次根式的加減第1課時(shí)

二次根式的加減人教版數(shù)學(xué)八年級(jí)下冊(cè)上節(jié)知識(shí)回顧二次根式化簡(jiǎn)被開方數(shù)不含_________被開方數(shù)中不含能__________的因數(shù)或因式分母開得盡方1.化簡(jiǎn):探究新知整式的加減

找同類項(xiàng)

合并同類項(xiàng)

二次根式的加減

合并同類二次根式

找同類二次根式

知識(shí)點(diǎn)1:二次根式的加減例如:

2a+

a=

(2+1)a=3a

?

合作探究觀察下列二次根式有什么共同特征:

每組的二次根式的被開方數(shù)相同下列二次根式又有什么共同特征?

經(jīng)過(guò)化成最簡(jiǎn)二次根式后,各根式被開放數(shù)相同,像這樣的幾個(gè)二次根式被稱為同類二次根式.1.與最簡(jiǎn)二次根式

能合并,則

m=_____.練一練1同學(xué)們可以說(shuō)出

的三個(gè)同類二次根式?

答案不唯一,如:

,

,.

二次根式的加減

找同類二次根式

合并同類二次根式

例如:

2a+

a=(2+1)a=3a

乘法分配律的逆運(yùn)用

同理:+=

-=(2+1)(2-

1)==思考現(xiàn)有一塊長(zhǎng)7.5dm、寬5dm的木板,能否采用如圖的方式,在這塊木板上截出兩個(gè)分別是8dm2和18dm2的正方形木板?7.5dm5dmS=8dm2S=18dm2分析:7.5大于還是小于

化為最簡(jiǎn)二次根式用分配律合并整式加減二次根式性質(zhì)分配律整式加減法則基本思想:把二次根式加減問(wèn)題轉(zhuǎn)化為整式加減問(wèn)題.歸納總結(jié)思考:如何合并同類二次根式?合并同類二次根式的方法是:(1)化——將非最簡(jiǎn)二次根式的二次根式化簡(jiǎn);(2)找——找出被開方數(shù)相同的二次根式;(3)并——把被開方數(shù)相同的二次根式合并.

“一化簡(jiǎn)二判斷三合并”例1計(jì)算:典例精析分析:(1)一:化簡(jiǎn)二:判斷三:合并(2)

練一練2.

計(jì)算:解:例2計(jì)算:分析:有括號(hào)先去括號(hào),然后再

“一化簡(jiǎn)二判斷三合并”練一練3.計(jì)算:解:4.有一個(gè)等腰三角形的兩邊長(zhǎng)分別為求其周長(zhǎng).分析:題目給的是等腰三角形的兩邊長(zhǎng),并未確定是底邊還是腰,則需分兩種情況討論.同時(shí)要滿足三角形三邊之間的關(guān)系.解:①

當(dāng)腰長(zhǎng)為

時(shí),∵∴此時(shí)能構(gòu)成三角形,周長(zhǎng)為②

當(dāng)腰長(zhǎng)為

時(shí),∵∴此時(shí)能構(gòu)成三角形,周長(zhǎng)為

課堂小結(jié)二次根式的加減先將二次根式化成_________再將__________相同的二次根式進(jìn)行_________最簡(jiǎn)二次根式被開方數(shù)合并當(dāng)堂練習(xí)基礎(chǔ)練習(xí)1.二次根式:中,與能進(jìn)行合并的是()2.下列運(yùn)算中錯(cuò)誤的是

)AC3.如果最簡(jiǎn)二次根式

能夠合并,

那么

x=_____.24.計(jì)算:能力提升解:(1)原式=5.計(jì)算:(2)原式=6.

已知

a,b,c滿足

.(1)求

a,b,c的值;(2)以

a,b,c為三邊長(zhǎng)能否構(gòu)成三角形?若能構(gòu)成三角形,求出其周長(zhǎng);若不能,請(qǐng)說(shuō)明理由.分析:(1)若幾個(gè)非負(fù)式的和為零,則這幾個(gè)非負(fù)式必須為零;(2)根據(jù)三角形的三邊關(guān)系來(lái)判斷.解:(1)由題意得

.(2)能.理由如下:∵即

a<c<b,又∵∴a+c>b,∴能構(gòu)成三角形,周長(zhǎng)為6.

已知

a,b,c滿足

.(1)求

a,b,c的值;(2)以

a,b,c為三邊長(zhǎng)能否構(gòu)成三角形?若能構(gòu)成三角形,求出其周長(zhǎng);若不能,請(qǐng)說(shuō)明理由.第十六章二次根式16.3二次根式的加減第2課時(shí)

二次根式的混合運(yùn)算人教版數(shù)學(xué)八年級(jí)下冊(cè)復(fù)習(xí)導(dǎo)入二次根式的乘法:_______________________二次根式的除法法則:______________________二次根式的加減法基本思想:二次根式的運(yùn)算法則:把二次根式加減問(wèn)題轉(zhuǎn)化為________加減問(wèn)題.整式

探究新知知識(shí)點(diǎn)1:二次根式的混合運(yùn)算及應(yīng)用例1類比計(jì)算,說(shuō)明理由.整式的乘法二次根式的乘法與加法..整式的混合計(jì)算二次根式的混合計(jì)算整式的除法二次根式的除法與減法..思考(1)在有理數(shù)范圍內(nèi)成立的運(yùn)算律,在實(shí)數(shù)范圍內(nèi)能否繼續(xù)使用?(2)二次根式的混合運(yùn)算與整式的混合運(yùn)算相同之處是什么?能.運(yùn)算順序相同.(3)左邊式子中的字母

a,b可以表示二次根式嗎?(4)怎樣進(jìn)行二次根式的混合運(yùn)算?可以.

二次根式的混合運(yùn)算,先要弄清運(yùn)算種類,再確定運(yùn)算順序:先乘除,再加減,有括號(hào)的要先算括號(hào)內(nèi)的,最后按照二次根式的相應(yīng)的運(yùn)算法則進(jìn)行.練一練1.計(jì)算:注意:除號(hào)后面有括號(hào)的要先算括號(hào)里的,不可用分配律!??!=1.平方差公式:乘法公式(a+b)(a-

b)=a2-

b2(a+b)2=a2+

2ab+b2完全平方公式:(a-

b)2=a2-

2ab+b2知識(shí)點(diǎn)2:利用乘法公式進(jìn)行二次根式的運(yùn)算

整式乘法運(yùn)算中的乘法公式有哪些?例2計(jì)算:分析:平方差公式(a+b)(a-b)=a2-

b2完全平方公式:(a+b)2=a2+

2ab+b2

答案:(1)2.

練一練2.計(jì)算:=18-48=-30.

知識(shí)點(diǎn)3:求代數(shù)式的值分析:因式分解例3已知

,

,求

x2

-

y2

的值.計(jì)算

x+y與

x-

y的值

代入上式

(x+y)(x-

y)

x2

-

y2解:∵x3y+xy3=xy(x2+y2)=xy[(x+y)2-

2xy],

練一練

x

+y=,3.

已知,求

x3y+xy3.又∵

xy=,∴

xy[(x+y)2-

2xy]=2×[()2-

2×2]=2×(12-4)=16.二次根式混合運(yùn)算運(yùn)算順序運(yùn)算律先乘方,后_____,最后______;如有括號(hào),先做_______的運(yùn)算,按_______、______、________依次進(jìn)行課堂小結(jié)乘除加減括號(hào)內(nèi)小括號(hào)中括號(hào)大括號(hào)二次根式運(yùn)算使用有理數(shù)運(yùn)算的所有運(yùn)算律,包括整式乘法法則和乘法公式仍然適用當(dāng)堂練習(xí)基礎(chǔ)練習(xí)1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論