排列組合中涂色問(wèn)題的常見(jiàn)方法及策略_第1頁(yè)
排列組合中涂色問(wèn)題的常見(jiàn)方法及策略_第2頁(yè)
排列組合中涂色問(wèn)題的常見(jiàn)方法及策略_第3頁(yè)
排列組合中涂色問(wèn)題的常見(jiàn)方法及策略_第4頁(yè)
排列組合中涂色問(wèn)題的常見(jiàn)方法及策略_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高三專(zhuān)題講座PAGE諸宸教育地址:湯陰一中對(duì)面(政通園二區(qū))短信聯(lián)系Q:1282716295排列組合中涂色問(wèn)題的常見(jiàn)方法及策略與涂色問(wèn)題有關(guān)的試題新穎有趣,其中包含著豐富的數(shù)學(xué)思想。解決涂色問(wèn)題方法技巧性強(qiáng)且靈活多變,故這類(lèi)問(wèn)題的利于培養(yǎng)學(xué)生的創(chuàng)新思維能力、分析問(wèn)題與觀察問(wèn)題的能力,有利于開(kāi)發(fā)學(xué)生的智力。本專(zhuān)題總結(jié)涂色問(wèn)題的常見(jiàn)類(lèi)型及求解方法。區(qū)域涂色問(wèn)題根據(jù)分步計(jì)數(shù)原理,對(duì)各個(gè)區(qū)域分步涂色,這是處理染色問(wèn)題的基本方法。用5種不同的顏色給圖中標(biāo)①、②、③、④的各部分涂色,每部分只涂一種顏色,相鄰部分涂不同顏色,則不同的涂色方法有多少種?②②①③④分析:先給①號(hào)區(qū)域涂色有5種方法,再給②號(hào)涂色有4種方法,接著給③號(hào)涂色方法有3種,由于④號(hào)與①、②不相鄰,因此④號(hào)有4種涂法,根據(jù)分步計(jì)數(shù)原理,不同的涂色方法有根據(jù)共用了多少種顏色討論,分別計(jì)算出各種出各種情形的種數(shù),再用加法原理求出不同的涂色方法種數(shù)。例2、(2003江蘇卷)四種不同的顏色涂在如圖所示的6個(gè)區(qū)域,且相鄰兩個(gè)區(qū)域不能同色。①②①②2③④⑤⑥(1)②與⑤同色、④與⑥同色,則有;(2)③與⑤同色、④與⑥同色,則有;(3)②與⑤同色、③與⑥同色,則有;(4)③與⑤同色、② 與④同色,則有;(5)②與④同色、③與⑥同色,則有;所以根據(jù)加法原理得涂色方法總數(shù)為5=120例3、(2003年全國(guó)高考題)如圖所示,一個(gè)地區(qū)分為5個(gè)行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一顏色,現(xiàn)有4種顏色可供選擇,則不同的著方法共有多少種?分析:依題意至少要用3種顏色2424315區(qū)域3與5必須同色,故有種;當(dāng)用四種顏色時(shí),若區(qū)域2與4同色,則區(qū)域3與5不同色,有種;若區(qū)域3與5同色,則區(qū)域2與4不同色,有種,故用四種顏色時(shí)共有2種。由加法原理可知滿足題意的著色方法共有+2=24+224=72根據(jù)某兩個(gè)不相鄰區(qū)域是否同色分類(lèi)討論,從某兩個(gè)不相鄰區(qū)域同色與不同色入手,分別計(jì)算出兩種情形的種數(shù),再用加法原理求出不同涂色方法總數(shù)。例4用紅、黃、藍(lán)、白、黑五種顏色涂在如圖所示的四個(gè)區(qū)域內(nèi),每個(gè)區(qū)域涂一種顏色,相鄰兩個(gè)區(qū)域涂不同的顏色,如果顏色可以反復(fù)使用,共有多少種不同的涂色方法?121234四格涂不同的顏色,方法種數(shù)為;有且僅兩個(gè)區(qū)域相同的顏色,即只有一組對(duì)角小方格涂相同的顏色,涂法種數(shù)為;兩組對(duì)角小方格分別涂相同的顏色,涂法種數(shù)為,因此,所求的涂法種數(shù)為根據(jù)相間區(qū)使用顏色的種類(lèi)分類(lèi)ABCDEFABCDEF解(1)當(dāng)相間區(qū)域A、C、E著同一種顏色時(shí),有4種著色方法,此時(shí),B、D、F各有3種著色方法,此時(shí),B、D、F各有3種著色方法故有種方法。(2)當(dāng)相間區(qū)域A、C、E著色兩不同的顏色時(shí),有種著色方法,此時(shí)B、D、F有種著色方法,故共有種著色方法。(3)當(dāng)相間區(qū)域A、C、E著三種不同的顏色時(shí)有種著色方法,此時(shí)B、D、面涂色問(wèn)題對(duì)線段涂色問(wèn)題,要注意對(duì)各條線段依次涂色,主要方法有:按色數(shù)來(lái)分例9、從給定的六種不同顏色中選用若干種顏色,將一個(gè)正方體的6個(gè)面涂色,每?jī)蓚€(gè)具有公共棱的面涂成不同的顏色,則不同的涂色方案共有多少種?分析:顯然,至少需要3三種顏色,由于有多種不同情況,仍應(yīng)考慮利用加法原理分類(lèi)、乘法原理分步進(jìn)行討論解:根據(jù)共用多少種不同的顏色分類(lèi)討論(1)用了六種顏色,確定某種顏色所涂面為下底面,則上底顏色可有5種選擇,在上、下底已涂好后,再確定其余4種顏色中的某一種所涂面為左側(cè)面,則其余3個(gè)面有3!種涂色方案,根據(jù)乘法原理(2)共用五種顏色,選定五種顏色有種方法,必有兩面同色(必為相對(duì)面),確定為上、下底面,其顏色可有5種選擇,再確定一種顏色為左側(cè)面,此時(shí)的方法數(shù)取決于右側(cè)面的顏色,有3種選擇(前后面可通過(guò)翻轉(zhuǎn)交換)(3)共用四種顏色,仿上分析可得(4)共用三種顏色,ABCDP例10、ABCDP553214解:這種面的涂色問(wèn)題可轉(zhuǎn)化為區(qū)域涂色問(wèn)題,如右圖,區(qū)域1、2、3、4相當(dāng)于四個(gè)側(cè)面,區(qū)域5相當(dāng)于底面;根據(jù)共用顏色多少分類(lèi):最少要用3種顏色,即1與3同色、2與4同色,此時(shí)有種;當(dāng)用4種顏色時(shí),1與3同色、2與4兩組中只能有一組同色,此時(shí)有;故滿足題意總的涂色方法總方法交總數(shù)為環(huán)形問(wèn)題的解決⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤解:設(shè)分成n個(gè)扇形時(shí)染色方法為種⑤當(dāng)n=2時(shí)、有=12種,即=12當(dāng)分成n個(gè)扇形,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論