2024屆江蘇省如東縣數(shù)學九年級第一學期期末綜合測試試題含解析_第1頁
2024屆江蘇省如東縣數(shù)學九年級第一學期期末綜合測試試題含解析_第2頁
2024屆江蘇省如東縣數(shù)學九年級第一學期期末綜合測試試題含解析_第3頁
2024屆江蘇省如東縣數(shù)學九年級第一學期期末綜合測試試題含解析_第4頁
2024屆江蘇省如東縣數(shù)學九年級第一學期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆江蘇省如東縣數(shù)學九年級第一學期期末綜合測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.已知函數(shù):(1)xy=9;(2)y=;(3)y=-;(4)y=;(5)y=,其中反比例函數(shù)的個數(shù)為(

)A.1 B.2 C.3 D.42.若函數(shù)y=的圖象在其象限內y的值隨x的增大而增大,則m的取值范圍是()A.m>2 B.m<2 C.m>-2 D.m<-23.如圖,線段AB兩個端點的坐標分別為A(6,6),B(8,2).以原點O為位似中心,在第一象限內將線段AB縮小后得到線段CD,且D(4,1),則端點C的坐標為()A.(3,1) B.(4,1) C.(3,3) D.(3,4)4.若二次函數(shù)的圖像與軸有兩個交點,則實數(shù)的取值范圍是()A. B. C. D.5.我們知道,一元二次方程可以用配方法、因式分解法或求根公式進行求解.對于一元三次方程ax3+bx2+cx+d=0(a,b,c,d為常數(shù),且a≠0)也可以通過因式分解、換元等方法,使三次方程“降次”為二次方程或一次程,進而求解.這兒的“降次”所體現(xiàn)的數(shù)學思想是()A.轉化思想 B.分類討論思想C.數(shù)形結合思想 D.公理化思想6.下列數(shù)是無理數(shù)的是()A. B. C. D.7.如圖,若二次函數(shù)的圖象的對稱軸是直線,則下列四個結論中,錯誤的是().A. B. C. D.8.某班學生做“用頻率估計概率”的實驗時,給出的某一結果出現(xiàn)的頻率折線圖,則符合這一結果的實驗可能是()A.拋一枚硬幣,出現(xiàn)正面朝上B.從標有1,2,3,4,5,6的六張卡片中任抽一張,出現(xiàn)偶數(shù)C.從一個裝有6個紅球和3個黑球的袋子中任取一球,取到的是黑球D.一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃9.圖中所示的幾個圖形是國際通用的交通標志.其中不是軸對稱圖形的是()A. B. C. D.10.二次函數(shù)的圖象可以由二次函數(shù)的圖象平移而得到,下列平移正確的是()A.先向右平移2個單位,再向上平移1個單位B.先向右平移2個單位,再向下平移1個單位C.先向左平移2個單位,再向上平移1個單位D.先向左平移2個單位,再向下平移1個單位11.下列各式屬于最簡二次根式的是()A. B. C. D.12.如圖,點是的邊上的一點,若添加一個條件,使與相似,則下列所添加的條件錯誤的是()A. B. C. D.二、填空題(每題4分,共24分)13.75°的圓心角所對的弧長是2.5cm,則此弧所在圓的半徑是_____cm.14.關于的方程有兩個不相等的實數(shù)根,那么的取值范圍是__________.15.如圖,以等邊△ABC的一邊AB為直徑的半圓O交AC于點D,交BC于點E,若AB=4,則陰影部分的面積是______.16.使代數(shù)式有意義的實數(shù)x的取值范圍為_____.17.如圖,在與中,,要使與相似,還需添加一個條件,這個條件可以是____________(只需填一個條件)18.如圖,在直角坐標系中,已知點、,對連續(xù)作旋轉變換,依次得到,則的直角頂點的坐標為__________.三、解答題(共78分)19.(8分)根據(jù)2019年莆田市初中畢業(yè)升學體育考試內容要求,甲、乙、丙在某節(jié)體育課他們各自隨機分別到籃球場A處進行籃球運球繞桿往返訓練或到足球場B處進行足球運球繞桿訓練,三名學生隨機選擇其中的一場地進行訓練.(1)用列表法或樹形圖表示出的所用可能出現(xiàn)的結果;(2)求甲、乙、丙三名學生在同一場地進行訓練的概率;(3)求甲、乙、丙三名學生中至少有兩人在B處場地進行訓練的概率.20.(8分)已知二次函數(shù)的圖象頂點是,且經過,求這個二次函數(shù)的表達式.21.(8分)如圖,AB是⊙O的直徑,點C是⊙O上一點,AD⊥DC于D,且AC平分∠DAB.延長DC交AB的延長線于點P.(1)求證:PC2=PA?PB;(2)若3AC=4BC,⊙O的直徑為7,求線段PC的長.22.(10分)如圖,在矩形ABCD中,AB=6,BC=8,點E是BC邊上的一個動點(不與點B.

C重合),連結AE,并作EF⊥AE,交CD邊于點F,連結AF.設BE=x,CF=y.(1)求證:△ABE∽△ECF;(2)當x為何值時,y的值為2;23.(10分)某商店準備進一批季節(jié)性小家電,單價40元.經市場預測,銷售定價為52元時,可售出180個,定價每增加1元,銷售量凈減少10個,因受庫存的影響,每批次進貨個數(shù)不得超過180個,商店若將準備獲利2000元,定價為多少元?24.(10分)如圖,在平面直角坐標系中,已知拋物線與軸交于、兩點,與軸交于點,其頂點為點,點的坐標為(0,-1),該拋物線與交于另一點,連接.(1)求該拋物線的解析式,并用配方法把解析式化為的形式;(2)若點在上,連接,求的面積;(3)一動點從點出發(fā),以每秒1個單位的速度沿平行于軸方向向上運動,連接,,設運動時間為秒(>0),在點的運動過程中,當為何值時,?25.(12分)如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點P,連接EF、EO,若DE=2,∠DPA=45°.(1)求⊙O的半徑;(2)求圖中陰影部分的面積.26.已知二次函數(shù)(k是常數(shù))(1)求此函數(shù)的頂點坐標.(2)當時,隨的增大而減小,求的取值范圍.(3)當時,該函數(shù)有最大值,求的值.

參考答案一、選擇題(每題4分,共48分)1、C【分析】直接根據(jù)反比例函數(shù)的定義判定即可.【詳解】解:反比例函數(shù)有:xy=9;y=;y=-.故答案為C.【點睛】本題考查了反比例函數(shù)的定義,即形如y=(k≠0)的函數(shù)關系叫反比例函數(shù)關系.2、B【分析】先根據(jù)反比例函數(shù)的性質列出關于m的不等式,求出m的取值范圍即可.【詳解】∵函數(shù)y=的圖象在其象限內y的值隨x值的增大而增大,∴m?1<0,解得m<1.

故選:B.【點睛】本題考查的是反比例函數(shù)的性質,熟知反比例函數(shù)y=(k≠0)中,當k<0時,雙曲線的兩支分別位于第二、第四象限,在每一象限內y隨x的增大而增大是解答此題的關鍵.3、C【分析】利用位似圖形的性質,結合兩圖形的位似比,即可得出C點坐標.【詳解】解:∵線段AB的兩個端點坐標分別為A(6,6),B(8,2),以原點O為位似中心,在第一象限內將線段AB縮小后得到線段CD,且D(4,1),∴在第一象限內將線段AB縮小為原來的后得到線段CD,∴點C的橫坐標和縱坐標都變?yōu)锳點的一半,∴點C的坐標為:(3,3).故選:C.【點睛】此題主要考查了位似圖形的性質,利用兩圖形的位似比得出對應點橫縱坐標關系是解題關鍵.在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或?k.4、D【解析】由拋物線與x軸有兩個交點可得出△=b2-4ac>0,進而可得出關于m的一元一次不等式,解之即可得出m的取值范圍.【詳解】∵拋物線y=x2-2x+m與x軸有兩個交點,∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故選D.【點睛】本題考查了拋物線與x軸的交點,牢記“當△=b2-4ac>0時,拋物線與x軸有2個交點”是解題的關鍵.5、A【分析】解高次方程的一般思路是逐步降次,所體現(xiàn)的數(shù)學思想就是轉化思想.【詳解】由題意可知,解一元三次方程的過程是將三次轉化為二次,二次轉化為一次,從而解題,在解題技巧上是降次,在解題思想上是轉化思想.故選:A.【點睛】本題考查高次方程;通過題意,能夠從中提取出解高次方程的一般方法,同時結合解題過程分析出所運用的解題思想是解題的關鍵.6、C【分析】根據(jù)無理數(shù)的定義進行判斷即可.【詳解】A.,有理數(shù);B.,有理數(shù);C.,無理數(shù);D.,有理數(shù);故答案為:C.【點睛】本題考查了無理數(shù)的問題,掌握無理數(shù)的定義是解題的關鍵.7、C【分析】根據(jù)對稱軸是直線得出,觀察圖象得出,,進而可判斷選項A,根據(jù)時,y值的大小與可判斷選項C、D,根據(jù)時,y值的大小可判斷選項B.【詳解】由題意知,,即,由圖象可知,,,∴,∴,選項A正確;當時,,選項D正確;∵,∴,選項C錯誤;當時,,選項B正確;故選C.【點睛】本題考查二次函數(shù)的圖象與系數(shù)a,b,c的關系,學會取特殊點的方法是解本題的關鍵.8、C【分析】根據(jù)統(tǒng)計圖可知,試驗結果在0.33附近波動,即其概率P≈0.33,計算四個選項的頻率,約為0.33者即為正確答案.【詳解】解:A、拋一枚硬幣,出現(xiàn)正面朝上的頻率是=0.5,故本選項錯誤;B、從標有1,2,3,4,5,6的六張卡片中任抽一張,出現(xiàn)偶數(shù)頻率約為:==0.5,故本選項錯誤;C、從一個裝有6個紅球和3個黑球的袋子中任取一球,取到的是黑球概率是=≈0.33,故本選項正確;D、一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃的概率是=0.25,故本選項錯誤;故選:C.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.同時此題在解答中要用到概率公式.9、C【分析】根據(jù)軸對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形.【詳解】A、B、D都是軸對稱圖形,而C不是軸對稱圖形.

故選C.【點睛】本題主要考查了軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.10、C【解析】二次函數(shù)平移都是通過頂點式體現(xiàn),將轉化為頂點式,與原式對比,利用口訣左加右減,上加下減,即可得到答案【詳解】解:∵,∴的圖形是由的圖形,向左平移2個單位,然后向上平移1個單位【點睛】本題主要考查二次函數(shù)圖形的平移問題,學生熟練掌握左加右減,上加下減即可解決這類題目11、B【解析】根據(jù)最簡二次根式的定義進行判斷即可.【詳解】解A、,不是最簡二次根式;B、2不能再開方,是最簡二次根式;C、,不是最簡二次根式;D、=2,不是最簡二次根式.故選:B.【點睛】本題考查了最簡二次根式,掌握二次根式的性質及最簡二次根式的定義是解答本題的關鍵.12、D【分析】在與中,已知有一對公共角∠B,只需再添加一組對應角相等,或夾已知等角的兩組對應邊成比例,即可判斷正誤.【詳解】A.已知∠B=∠B,若,則可以證明兩三角形相似,正確,不符合題意;B.已知∠B=∠B,若,則可以證明兩三角形相似,正確,不符合題意;C.已知∠B=∠B,若,則可以證明兩三角形相似,正確,不符合題意;D.若,但夾的角不是公共等角∠B,則不能證明兩三角形相似,錯誤,符合題意,故選:D.【點睛】本題考查相似三角形的判定,熟練掌握相似三角形的判定條件是解答的關鍵.二、填空題(每題4分,共24分)13、1【分析】由弧長公式:計算.【詳解】解:由題意得:圓的半徑.故本題答案為:1.【點睛】本題考查了弧長公式.14、且【解析】分析:根據(jù)一元二次方程的定義以及根的判別式的意義可得△=4-12m>1且m≠1,求出m的取值范圍即可.詳解:∵一元二次方程mx2-2x+3=1有兩個不相等的實數(shù)根,∴△>1且m≠1,∴4-12m>1且m≠1,∴m<且m≠1,故答案為:m<且m≠1.點睛:本題考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c為常數(shù))根的判別式△=b2-4ac.當△>1,方程有兩個不相等的實數(shù)根;當△=1,方程有兩個相等的實數(shù)根;當△<1,方程沒有實數(shù)根.也考查了一元二次方程的定義.15、【分析】作輔助線證明△AOD≌△DOE≌△EOB≌△CDE,且都為等邊三角形,利用等邊三角形面積公式S=即可解題.【詳解】解:連接DE,OD,OE,在圓中,OA=OD=OE=OB,∵△ABC是等邊三角形,∴∠A=60°,∴△AOD≌△DOE≌△EOB≌△CDE,且都為等邊三角形,∵AB=4,即OA=OD=OE=OB=2,易證陰影部分面積=S△CDE==.【點睛】本題考查了圓的性質,等邊三角形的判定和面積公式,屬于簡單題,作輔助線證明等邊三角形是解題關鍵.16、【分析】根據(jù)二次根式有意義的條件得出即可求解.【詳解】若代數(shù)式有意義,則,解得:,即實數(shù)x的取值范圍為.故填:【點睛】本題考查二次根式有意義的條件,熟練掌握二次根式有意義即根號內的式子要大于等于零是關鍵.17、∠B=∠E【分析】根據(jù)兩邊及其夾角法:兩組對應邊的比相等且夾角對應相等的兩個三角形相似可得添加條件:∠B=∠E.【詳解】添加條件:∠B=∠E;

∵,∠B=∠E,

∴△ABC∽△AED,

故答案為:∠B=∠E(答案不唯一).【點睛】此題考查相似三角形的判定,解題關鍵是掌握相似三角形的判定定理.18、【分析】根據(jù)勾股定理列式求出AB的長,再根據(jù)第四個三角形與第一個三角形的位置相同可知每三個三角形為一個循環(huán)組依次循環(huán),然后求出一個循環(huán)組旋轉前進的長度,再用2019除以3,根據(jù)商為673可知第2019個三角形的直角頂點為循環(huán)組的最后一個三角形的頂點,求出即可.【詳解】解:∵點A(-3,0)、B(0,4),

∴AB==5,

由圖可知,每三個三角形為一個循環(huán)組依次循環(huán),一個循環(huán)組前進的長度為:4+5+3=12,

∵2019÷3=673,

∴△2019的直角頂點是第673個循環(huán)組的最后一個三角形的直角頂點,

∵673×12=8076,

∴△2019的直角頂點的坐標為(8076,0).故答案為(8076,0).【點睛】本題主要考查了點的坐標變化規(guī)律,仔細觀察圖形得到每三個三角形為一個循環(huán)組依次循環(huán)是解題的關鍵,也是求解的難點.圖形或點旋轉之后要結合旋轉的角度和圖形的特殊性質來求出旋轉后的點的坐標.三、解答題(共78分)19、(1)共有8種可能;(2);(3)【分析】(1)用樹狀圖分3次實驗列舉出所有情況即可;

(2)看3人在同一場地進行訓練的情況數(shù)占總情況數(shù)的多少即可;

(3)看至少有兩人在處場地進行訓練的情況數(shù)占總情況數(shù)的多少即可.【詳解】(1)由上樹狀圖可知甲、乙、丙三名學生進行體育訓練共有8種可能,(2)所有出現(xiàn)情況等可能,其中甲、乙、丙三名學生在同一場地進行訓練有2種可能并把它記為事件A,則P(A)=(3)其中甲、乙、1丙三名學生中至少有兩人在B處場地進行訓練有4種可能并把它記為事件B,則P(B)=【點睛】此題考查列表法與畫樹狀圖法,解題關鍵在于掌握概率=所求情況數(shù)與總情況數(shù)之比.20、【分析】根據(jù)二次函數(shù)解析式的頂點式以及待定系數(shù)法,即可得到答案.【詳解】把頂點代入得:,把代入得:,∴二次函數(shù)的表達式為:.【點睛】本題主要考查二次函數(shù)的待定系數(shù)法,掌握二次函數(shù)解析式的頂點式是解題的關鍵.21、(1)見解析;(2)PC=1.【分析】(1)證明△PAC∽△PCB,可得,即可證明PC2=PA?PB;(2)若3AC=4BC,則,由(1)可求線段PC的長.【詳解】(1)∵AB是⊙O的直徑,∴∠ACB=90°.∵AD⊥DC于D,且AC平分∠DAB,∴∠PDA=90°,∠DAC=∠BAC.∵∠PCA=∠PDA+∠DAC,∠PBC=∠ACB+∠BAC,∴∠PCA=∠PBC.∵∠BPC=∠CPA,∴△PAC∽△PCB,∴,∴PC2=PA?PB;(2)∵3AC=4BC,∴.設PC=4k,則PB=3k,PA=3k+7,∴(4k)2=3k(3k+7),∴k=3或k=0(舍去),∴PC=1.【點睛】本題考查了三角形相似的判定與性質,圓周角定理,解一元二次方程等知識,熟練掌握相似三角形的判定與性質是解答本題的關鍵.22、(1)見解析;(2)x的值為2或1時,y的值為2【分析】(1)①先判斷出∠BAE=∠CEF,即可得出結論;(2)利用的相似三角形得出比例式即可建立x,y的關系式,代入即可;【詳解】(1)證明:∵四邊形ABCD是矩形,∴∠B=∠C=90°.∵AE⊥EF,∴∠AEF=90°=∠B.∴∠BAE+∠AEB=90°,∠FEC+∠AEB=90°,∴∠BAE=∠CEF.又∵∠B=∠C,∴△ABE∽△ECF.②∵△ABE∽△ECF.∴,∵AB=1,BC=8,BE=x,CF=y(tǒng),EC=8?x,∴.∴y=?x2+x.∵y=2,?x2+x=2,解得x1=2,x2=1.∵0<x<8,∴x的值為2或1.【點睛】此題是相似形綜合題,主要考查了矩形的性質,相似三角形的判定和性質,解本題的關鍵是用方程的思想解決問題.23、該商品定價60元.【分析】設每個商品定價x元,然后根據(jù)題意列出方程求解即可.【詳解】解:設每個商品定價x元,由題意得:解得,當x=50時,進貨180-10(50-52)=200,不符題意,舍去當x=60時,進貨180-10(60-52)=100,符合題意.答:當該商品定價60元,進貨100個.【點睛】本題主要考查一元一次方程的應用,關鍵是設出未知數(shù)然后列方程求解即可.24、(1);(2);(3)【解析】(1)將A,B兩點的坐標代入拋物線解析式中,得到關于a,b的方程組,解之求得a,b的值,即得解析式,并化為頂點式即可;(2)過點A作AH∥y軸交BC于H,BE于G,求出直線BC,BE的解析式,繼而可以求得G、H點的坐標,進一步求出GH,聯(lián)立BE與拋物線方程求出點F的坐標,然后根據(jù)三角形面積公式求出△FHB的面積;(3)設點M坐標為(2,m),由題意知△OMB是直角三角形,進而利用勾股定理建立關于m的方程,求出點M的坐標,從而求出MD,最后求出時間t.【詳解】(1)∵拋物線與軸交于A(1,0),B(3,0)兩點,∴∴∴拋物線解析式為.(2)如圖1,

過點A作AH∥y軸交BC于H,BE于G,由(1)有,C(0,-2),∵B(3,0),∴直線BC解析式為y=x-2,∵H(1,y)在直線BC上,∴y=-,∴H(1,-),∵B(3,0),E(0,-1),∴直線BE解析式為y=-x-1,∴G(1,-),∴GH=,∵直線BE:y=-x-1與拋物線y=-x2+x-2相較于F,B,∴F(,-),∴S△FHB=GH×|xG-xF|+GH×|xB-xG|=GH×|xB-xF|=××(3-)=.(3)如圖2,由(1)有y=-x2+x-2,∵D為拋物線的頂點,∴D(2,),∵一動點M從點D出發(fā),以每秒1個單位的速度平沿行與y軸方向向上運動,∴設M(2,m),(m>),∴OM2=m2+4,BM2=m2+1,OB2=9,∵∠OMB=90°,∴OM2+BM2=OB2,∴m2+4+m2+1=9,∴m=或m=-(舍),∴M(2,),∴MD=-,∴t=-.【點睛】本題考查了待定系數(shù)法求二次函數(shù)的表達式,待定系數(shù)法求一次函數(shù)表達式,角平分線上的點到兩邊的距離相等,勾股定理等知識點,綜合性比較強,不僅要掌握性質定理,作合適的輔助線也對解題起重要作用.25、(1);(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論