2024屆江蘇省蘇州市同里中學(xué)數(shù)學(xué)九年級第一學(xué)期期末考試模擬試題含解析_第1頁
2024屆江蘇省蘇州市同里中學(xué)數(shù)學(xué)九年級第一學(xué)期期末考試模擬試題含解析_第2頁
2024屆江蘇省蘇州市同里中學(xué)數(shù)學(xué)九年級第一學(xué)期期末考試模擬試題含解析_第3頁
2024屆江蘇省蘇州市同里中學(xué)數(shù)學(xué)九年級第一學(xué)期期末考試模擬試題含解析_第4頁
2024屆江蘇省蘇州市同里中學(xué)數(shù)學(xué)九年級第一學(xué)期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆江蘇省蘇州市同里中學(xué)數(shù)學(xué)九年級第一學(xué)期期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.已知反比例函數(shù)y=﹣,下列結(jié)論中不正確的是()A.圖象必經(jīng)過點(﹣3,2) B.圖象位于第二、四象限C.若x<﹣2,則0<y<3 D.在每一個象限內(nèi),y隨x值的增大而減小2.如圖,拋物線交x軸于點A(a,0)和B(b,0),交y軸于點C,拋物線的頂點為D,下列四個結(jié)論:①點C的坐標(biāo)為(0,m);②當(dāng)m=0時,△ABD是等腰直角三角形;③若a=-1,則b=4;④拋物線上有兩點P(,)和Q(,),若<1<,且+>2,則>.其中結(jié)論正確的序號是()A.①② B.①②③ C.①②④ D.②③④3.已知關(guān)于x的不等式2x-m>-3的解集如圖所示,則m的取值為()A.2 B.1 C.0 D.-14.如圖,小明在打乒乓球時,為使球恰好能過網(wǎng)(設(shè)網(wǎng)高AB=15cm),且落在對方區(qū)域桌子底線C處,已知小明在自己桌子底線上方擊球,則他擊球點距離桌面的高度DE為()A.15cm B.20cm C.25cm D.30cm5.下列四個點,在反比例函數(shù)y=圖象上的是(

)A.(1,-6) B.(2,4) C.(3,-2) D.(-6,-1)6.如圖,正六邊形ABCDEF內(nèi)接于⊙O,若直線PA與⊙O相切于點A,則∠PAB=()A.30° B.35° C.45° D.60°7.拋物線y=x2-2x+m與x軸有兩個交點,則m的取值范圍為()A.m>1 B.m≥1 C.m<1 D.m≤18.順次連接梯形各邊中點所組成的圖形是()A.平行四邊形 B.菱形 C.梯形 D.正方形9.下列由幾何圖形組合的圖案中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.10.已知二次函數(shù)y=ax2+bx+c的y與x的部分對應(yīng)值如下表:則下列判斷中正確的是()

x

﹣1

0

1

2

y

﹣5

1

3

1

…A.拋物線開口向上

B.拋物線與y軸交于負(fù)半軸C.當(dāng)x=3時,y<0

D.方程ax2+bx+c=0有兩個相等實數(shù)根11.第一中學(xué)九年級有340名學(xué)生,現(xiàn)對他們的生日進(jìn)行統(tǒng)計(可以不同年),下列說法正確的是()A.至少有兩人生日相同 B.不可能有兩人生日相同C.可能有兩人生日相同,且可能性較大 D.可能有兩人生日相同,但可能性較小12.如圖,在△ABC中,DE//BC,,S梯形BCED=8,則S△ABC是()A.13 B.12 C.10 D.9二、填空題(每題4分,共24分)13.一個三角形的三邊之比為,與它相似的三角形的周長為,則與它相似的三角形的最長邊為____________.14.若,則x=__.15.方程2x2-x=0的根是______.16.如圖,飛鏢游戲板中每一塊小正方形除顏色外都相同.若某人向游戲板投擲飛鏢一次(假設(shè)飛鏢落在游戲板上),則飛鏢落在陰影部分的概率是_________.17.如圖,在邊長為2的正方形ABCD中,以點D為圓心,AD長為半徑畫,再以BC為直徑畫半圓,若陰影部分①的面積為S1,陰影部分②的面積為S2,則圖中S1﹣S2的值為_____.(結(jié)果保留π)18.二次函數(shù)的圖象與軸只有一個公共點,則的值為________.三、解答題(共78分)19.(8分)已知:如圖,在△ABC中,AD是∠BAC的平分線,∠ADE=∠B.求證:(1)△ABD∽△ADE;(2)AD2=AE?AB.20.(8分)歡歡放學(xué)回家看到桌上有三個禮包,是爸爸送給歡歡和姐姐的禮物,其中禮包是芭比娃娃,和禮包都是智能對話機器人.這些禮包用外表一樣的包裝盒裝著,看不到里面的禮物.(1)歡歡隨機地從桌上取出一個禮包,取出的是芭比娃娃的概率是多少?(2)請用樹狀圖或列表法表示歡歡隨機地從桌上取出兩個禮包的所有可能結(jié)果,并求取出的兩個禮包都是智能對話機器人的概率.21.(8分)問題發(fā)現(xiàn):(1)如圖1,內(nèi)接于半徑為4的,若,則_______;問題探究:(2)如圖2,四邊形內(nèi)接于半徑為6的,若,求四邊形的面積最大值;解決問題(3)如圖3,一塊空地由三條直路(線段、AB、)和一條弧形道路圍成,點是道路上的一個地鐵站口,已知千米,千米,,的半徑為1千米,市政府準(zhǔn)備將這塊空地規(guī)劃為一個公園,主入口在點處,另外三個入口分別在點、、處,其中點在上,并在公園中修四條慢跑道,即圖中的線段、、、,是否存在一種規(guī)劃方案,使得四條慢跑道總長度(即四邊形的周長)最大?若存在,求其最大值;若不存在,說明理由.22.(10分)當(dāng)時,求的值.23.(10分)如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于A(﹣1,0),B(4,0),C(0,﹣4)三點,點P是直線BC下方拋物線上一動點.(1)求這個二次函數(shù)的解析式;(2)是否存在點P,使△POC是以O(shè)C為底邊的等腰三角形?若存在,求出P點坐標(biāo);若不存在,請說明理由;(3)動點P運動到什么位置時,△PBC面積最大,求出此時P點坐標(biāo)和△PBC的最大面積.24.(10分)如圖,在矩形ABCD中,E是BC上一點,連接AE,將矩形沿AE翻折,使點B落在CD邊F處,連接AF,在AF上取一點O,以點O為圓心,OF為半徑作⊙O與AD相切于點P.AB=6,BC=(1)求證:F是DC的中點.(2)求證:AE=4CE.(3)求圖中陰影部分的面積.25.(12分)如圖所示,在△ABC中,∠B=90°,AB=11mm,BC=14mm,動點P從點A開始,以1mm/S的速度沿邊AB向B移動(不與點B重合),動點Q從點B開始,以4m/s的速度沿邊BC向C移動(不與C重合),如果P、Q分別從A、B同時出發(fā),設(shè)運動的時間為xs,四邊形APQC的面積為ymm1.(1)寫出y與x之間的函數(shù)表達(dá)式;(1)當(dāng)x=1時,求四邊形APQC的面積.26.如圖,已知點B的坐標(biāo)是(-2,0),點C的坐標(biāo)是(8,0),以線段BC為直徑作⊙A,交y軸的正半軸于點D,過B、C、D三點作拋物線.(1)求拋物線的解析式;(2)連結(jié)BD,CD,點E是BD延長線上一點,∠CDE的角平分線DF交⊙A于點F,連結(jié)CF,在直線BE上找一點P,使得△PFC的周長最小,并求出此時點P的坐標(biāo);(3)在(2)的條件下,拋物線上是否存在點G,使得∠GFC=∠DCF,若存在,請直接寫出點G的坐標(biāo);若不存在,請說明理由.

參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)反比例函數(shù)的性質(zhì)對各選項進(jìn)行逐一分析即可.【詳解】A、∵(﹣3)×2=﹣6,∴圖象必經(jīng)過點(﹣3,2),故本選項正確;B、∵k=﹣6<0,∴函數(shù)圖象的兩個分支分布在第二、四象限,故本選項正確;C、∵x=-2時,y=3且y隨x的增大而而增大,∴x<﹣2時,0<y<3,故本選項正確;D、函數(shù)圖象的兩個分支分布在第二、四象限,在每一象限內(nèi),y隨x的增大而增大,故本選項錯誤.故選D.【點睛】本題考查的是反比例函數(shù)的性質(zhì),在解答此類題目時要注意其增減性限制在每一象限內(nèi),不要一概而論.2、C【分析】根據(jù)二次函數(shù)圖像的基本性質(zhì)依次進(jìn)行判斷即可.【詳解】①當(dāng)x=0時,y=m,∴點C的坐標(biāo)為(0,m),該項正確;②當(dāng)m=0時,原函數(shù)解析式為:,此時對稱軸為:,且A點交于原點,∴B點坐標(biāo)為:(2,0),即AB=2,∴D點坐標(biāo)為:(1,1),根據(jù)勾股定理可得:BD=AD=,∴△ABD為等腰三角形,∵,∴△ABD為等腰直角三角形,該項正確;③由解析式得其對稱軸為:,利用其圖像對稱性,∴當(dāng)若a=-1,則b=3,該項錯誤;④∵+>2,∴,又∵<1<,∴-1<1<-1,∴Q點離對稱軸較遠(yuǎn),∴>,該項正確;綜上所述,①②④正確,③錯誤,故選:C.【點睛】本題主要考查了二次函數(shù)圖像解析式與其函數(shù)圖像的性質(zhì)綜合運用,熟練掌握相關(guān)概念是解題關(guān)鍵.3、D【分析】本題是關(guān)于x的不等式,應(yīng)先只把x看成未知數(shù),求得x的解集,再根據(jù)數(shù)軸上的解集,來求得a的值.【詳解】2x>m?3,解得x>,∵在數(shù)軸上的不等式的解集為:x>?2,∴=?2,解得m=?1;故選:D.【點睛】當(dāng)題中有兩個未知字母時,應(yīng)把關(guān)于某個字母的不等式中的字母當(dāng)成未知數(shù),求得解集,再根據(jù)數(shù)軸上的解集進(jìn)行判斷,求得另一個字母的值.4、D【分析】證明△CAB∽△CDE,然后利用相似比得到DE的長.【詳解】∵AB∥DE,∴△CAB∽△CDE,∴,而BC=BE,∴DE=2AB=2×15=30(cm).故選:D.【點睛】本題考查了相似三角形的應(yīng)用,用相似三角形對應(yīng)邊的比相等的性質(zhì)求物體的高度.5、D【解析】由可得xy=6,故選D.6、A【解析】試題分析:連接OA,根據(jù)直線PA為切線可得∠OAP=90°,根據(jù)正六邊形的性質(zhì)可得∠OAB=60°,則∠PAB=∠OAP-∠OAB=90°-60°=30°.考點:切線的性質(zhì)7、C【分析】拋物線與軸有兩個交點,則,從而求出的取值范圍.【詳解】解:∵拋物線與軸有兩個交點∴∴∴故選:C【點睛】本題考查了拋物線與軸的交點問題,注:①拋物線與軸有兩個交點,則;②拋物線與軸無交點,則;③拋物線與軸有一個交點,則.8、A【解析】連接AC、BD,根據(jù)三角形的中位線定理得到EH∥AC,EH=AC,同理FG∥AC,F(xiàn)G=AC,進(jìn)一步推出EH=FG,EH∥FG,即可得到答案.【詳解】解:連接AC、BD,∵E是AD的中點,H是CD的中點,∴EH=AC,同理FG=AC,∴EH=FG,同理EF=HG,∴四邊形EFGH是平行四邊形,故選:A.【點睛】本題考查了中位線的性質(zhì),平行四邊形的判定,屬于簡單題,熟悉中位線的性質(zhì)是解題關(guān)鍵.9、A【分析】根據(jù)軸對稱圖形和中心對稱圖形的定義逐項判斷即得答案.【詳解】解:A、既是軸對稱圖形又是中心對稱圖形,故本選項符合題意;B、是軸對稱圖形,但不是中心對稱圖形,故本選項不符合題意;C、是中心對稱圖形,但不是軸對稱圖形,故本選項不符合題意;D、是中心對稱圖形,但不是軸對稱圖形,故本選項不符合題意.故選:A.【點睛】本題考查了軸對稱圖形和中心對稱圖形的定義,屬于應(yīng)知應(yīng)會題型,熟知二者的概念是解題關(guān)鍵.10、C【解析】根據(jù)表格的數(shù)據(jù),描點連線得,根據(jù)函數(shù)圖像,得:拋物線開口向下;拋物線與y軸交于正半軸;當(dāng)x=3時,y<0;方程有兩個相等實數(shù)根.故選C.11、C【分析】依據(jù)可能性的大小的概念對各選項進(jìn)行逐一分析即可.【詳解】A.因為一年有365天而某學(xué)校只有340人,所以至少有兩名學(xué)生生日相同是隨機事件.故本選項錯誤;B.兩人生日相同是隨機事件,故本選項錯誤;C.因為320365=6473>50%,所以可能性較大.正確;D.由C可知,可能性較大,故本選項錯誤.故選:C.【點睛】本題考查了可能性的大小,也考查了我們對常識的了解情況.12、D【分析】由DE∥BC,可證△ADE∽△ABC,根據(jù)相似三角形的面積比等于相似比的平方,求△ADE的面積,再加上BCED的面積即可.【詳解】解:∵DE∥BC,∴△ADE∽△ABC,∴===,∴,∵S梯形BCED=8,∴∴故選:D【點睛】本題考查了相似三角形的判定與性質(zhì).關(guān)鍵是利用平行線得相似,利用相似三角形的面積的性質(zhì)求解.二、填空題(每題4分,共24分)13、18cm.【分析】由一個三角形的三邊之比為3:6:4,可得與它相似的三角形的三邊之比為3:6:4,又由與它相似的三角形的周長為39cm,即可求得答案.【詳解】解:∵一個三角形的三邊之比為3:6:4,∴與它相似的三角形的三邊之比為3:6:4,∵與它相似的三角形的周長為39cm,∴與它相似的三角形的最長邊為:39×=18(cm).

故答案為:18cm.【點睛】此題考查了相似三角形的性質(zhì).此題比較簡單,注意相似三角形的對應(yīng)邊成比例.14、【分析】用直接開平方法解方程即可.【詳解】,,,故答案為:.【點睛】此題考查一元二次方程的解法,依據(jù)方程的特點選擇恰當(dāng)?shù)姆椒?15、x1=,x2=0【分析】利用因式分解法解方程即可.【詳解】2x2-x=0,x(2x-1)=0,x=0或2x-1=0,∴x1=,x2=0.故答案為x1=,x2=0.【點睛】本題考查了一元二次方程的解法-因式分解法,熟練運用因式分解法將方程化為x(2x-1)=0是解決問題的關(guān)鍵.16、【分析】根據(jù)幾何概率的求法:飛鏢落在陰影部分的概率就是陰影區(qū)域的面積與總面積的比值.【詳解】∵總面積為3×3=9,其中陰影部分面積為4××1×2=4,∴飛鏢落在陰影部分的概率是,故答案為.【點睛】此題考查幾何概率,解題關(guān)鍵在于掌握運算法則.17、π【分析】如圖,設(shè)圖中③的面積為S1.構(gòu)建方程組即可解決問題.【詳解】解:如圖,設(shè)圖中③的面積為S1.由題意:,可得S1﹣S2=π,故答案為π.【點睛】本題考查扇形的面積、正方形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程組解決問題.18、【解析】根據(jù)△=b2-4ac=0時,拋物線與x軸有1個交點得到△=(-2)2-4m=0,然后解關(guān)于m的方程即可.【詳解】根據(jù)題意得△=(-2)2-4m=0,

解得m=1.

故答案是:1.【點睛】考查了拋物線與x軸的交點:對于二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0),△=b2-4ac決定拋物線與x軸的交點個數(shù):△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.三、解答題(共78分)19、(1)證明見解析;(2)證明見解析.【分析】(1)由AD是的平分線可得,又,則結(jié)論得證;(2)由(1)可得出結(jié)論.【詳解】證明:(1)是的平分線,,.∽;(2)∽,.【點睛】此題主要考查了相似三角形的判定與性質(zhì),證明∽是解題的關(guān)鍵.20、(1);(2)【分析】(1)根據(jù)一共三個禮包,芭比娃娃的禮包占一種即可計算概率;(2)列出所有可能的結(jié)果,再找到符合要求的個數(shù),即可得到概率.【詳解】(1)根據(jù)題意,可知取出的是芭比娃娃的概率是.(2)結(jié)果:,,,,,,由圖可知,共有6種等可能的結(jié)果,而符合要求的是,兩種,∴取出的兩個禮包都是智能機器人的概率是.【點睛】本題考查了列表法或樹狀法求概率,正確列出所有可能結(jié)果是解題的關(guān)鍵.21、(1);(2)四邊形ABCD的面積最大值是;(3)存在,其最大值為.【分析】(1)連接OA、OB,作OH⊥AB于H,利用求出∠AOH=∠AOB=,根據(jù)OA=4,利用余弦公式求出AH,即可得到AB的長;(2)連接AC,由得出AC=,再根據(jù)四邊形的面積=,當(dāng)DH+BM最大時,四邊形ABCD的面積最大,得到BD是直徑,再將AC、BD的值代入求出四邊形面積的最大值即可;(3)先證明△ADM≌△BMC,得到△CDM是等邊三角形,求得等邊三角形的邊長CD,再根據(jù)完全平方公式的關(guān)系得出PD=PC時PD+PC最大,根據(jù)CD、∠DPC求出PD,即可得到四邊形周長的最大值.【詳解】(1)連接OA、OB,作OH⊥AB于H,∵,∴∠AOB=120.∵OH⊥AB,∴∠AOH=∠AOB=,AH=BH=AB,∵OA=4,∴AH=,∴AB=2AH=.故答案為:.(2)∵∠ABC=120,四邊形ABCD內(nèi)接于,∴∠ADC=60,∵的半徑為6,∴由(1)得AC=,如圖,連接AC,作DH⊥AC,BM⊥AC,∴四邊形的面積=,當(dāng)DH+BM最大時,四邊形ABCD的面積最大,連接BD,則BD是的直徑,∴BD=2OA=12,BD⊥AC,∴四邊形的面積=.∴四邊形ABCD的面積最大值是(3)存在;∵千米,千米,,∴△ADM≌△BMC,∴DM=MC,∠AMD=∠BCM,∵∠BCM+∠BMC=180-∠B=120,∴∠AMD+∠BMC=120,∴∠DMC=60,∴△CDM是等邊三角形,∴C、D、M三點共圓,∵點P在弧CD上,∴C、D、M、P四點共圓,∴∠DPC=180-∠DMC=120,∵弧的半徑為1千米,∠DMC=60,∴CD=,∵,∴,∴,∴當(dāng)PD=PC時,PD+PC最大,此時點P在弧CD的中點,交DC于H,在Rt△DPH中,∠DHP=90,∠DPH=60,DH=DC=,∴,∴四邊形的周長最大值=DM+CM+DP+CP=.【點睛】此題是一道綜合題,考查圓的性質(zhì),垂徑定理,三角函數(shù),三角形全等的判定及性質(zhì),動點最大值等知識點.(1)中問題發(fā)現(xiàn)的結(jié)論應(yīng)用很主要,理解題意在(2)、(3)中應(yīng)用解題,(3)的PD+PC最大值的確定是難點,注意與所學(xué)知識的結(jié)合才能更好的解題.22、【分析】先對分式進(jìn)行化簡,然后代值計算.【詳解】原式=將代入得故答案為:【點睛】本題考查分式的化簡,注意先化簡過程中,可以適當(dāng)使用乘法公式,從而簡化計算.23、(1)y=x2﹣3x﹣4;(2)存在,P(,﹣2);(3)當(dāng)P點坐標(biāo)為(2,﹣6)時,△PBC的最大面積為1.【詳解】試題分析:(1)由A、B、C三點的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由題意可知點P在線段OC的垂直平分線上,則可求得P點縱坐標(biāo),代入拋物線解析式可求得P點坐標(biāo);(3)過P作PE⊥x軸,交x軸于點E,交直線BC于點F,用P點坐標(biāo)可表示出PF的長,則可表示出△PBC的面積,利用二次函數(shù)的性質(zhì)可求得△PBC面積的最大值及P點的坐標(biāo).試題解析:(1)設(shè)拋物線解析式為y=ax2+bx+c,把A、B、C三點坐標(biāo)代入可得,解得,∴拋物線解析式為y=x2﹣3x﹣4;(2)作OC的垂直平分線DP,交OC于點D,交BC下方拋物線于點P,如圖1,∴PO=PD,此時P點即為滿足條件的點,∵C(0,﹣4),∴D(0,﹣2),∴P點縱坐標(biāo)為﹣2,代入拋物線解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,∴存在滿足條件的P點,其坐標(biāo)為(,﹣2);(3)∵點P在拋物線上,∴可設(shè)P(t,t2﹣3t﹣4),過P作PE⊥x軸于點E,交直線BC于點F,如圖2,∵B(4,0),C(0,﹣4),∴直線BC解析式為y=x﹣4,∴F(t,t﹣4),∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,∴S△PBC=S△PFC+S△PFB=PF?OE+PF?BE=PF?(OE+BE)=PF?OB=(﹣t2+4t)×4=﹣2(t﹣2)2+1,∴當(dāng)t=2時,S△PBC最大值為1,此時t2﹣3t﹣4=﹣6,∴當(dāng)P點坐標(biāo)為(2,﹣6)時,△PBC的最大面積為1.考點:二次函數(shù)綜合題.24、(1)見解析;(2)見解析;(3)【分析】(1)易求DF長度即可判斷;(2)通過30°角所對的直角邊等于斜邊一半證得AE=2EF,EF=2CE即可得;(3)先證明△OFG為等邊三角形,△OPG為等邊三角形,即可確定扇形圓心角∠POG和∠GOF的大小均為60°,所以兩扇形面積相等,通過割補法得出最后陰影面積只與矩形OPDH和△OGF有關(guān),根據(jù)面積公式求出兩圖形面積即可.【詳解】(1)∵AF=AB=6,AD=BC=,∴DF=3,∴CF=DF=3,∴F是CD的中點(2)∵AF=6,DF=3,∴∠DAF=30°,∴∠EAF=30?,∴AE=2EF;∴∠EFC=30?,EF=2CE,∴AE=4CE(3)如圖,連接OP,OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG為等邊三角形,同理△OPG為等邊三角形,∴∠POG=∠FOG=60°,OH=,∴S扇形OPG=S扇形OGF,∴S陰影=(S矩形OPDH-S扇形OPG-S△OGH)+(S扇形OGF-S△OFG)=S矩形OPDH-S△OFG=,即圖中陰影部分的面積.【點睛】本題考查了正方形的性質(zhì),等邊三角形的性質(zhì)及解直角三角形,涉及知識點較多,綜合性較強,根據(jù)條件,結(jié)合圖形找準(zhǔn)對應(yīng)知識點是解答此題的關(guān)鍵.25、(1)y=4x1﹣14x+144;(1)111mm1.【分析】(1)用x表示PB和BQ.利用兩個直角三角形的面積差求得答案即可;(1)求出x=1時,y的值即可得.【詳解】解:(1)∵運動時間為x,點P的速度為1mm/s,點Q的速度為4mm/s,∴PB=11﹣1x,BQ=4x,∴y=.(1)當(dāng)x=1時,y=4×11﹣14×1+144=111,即當(dāng)x=1時,四邊形APQC的面積為111mm1.【點睛】本題考查了幾何動點與二次函數(shù)的問題,解題的關(guān)鍵是根據(jù)動點的運動表示出函數(shù)關(guān)系式.26、(1);(2);(3)【分析】(1)由BC是直徑證得∠OCD=∠BDO,從而得到△BOD∽△DOC,根據(jù)線段成比例求出OD的長,設(shè)拋物線解析式為y=a(x+2)(x-8),將點D坐標(biāo)代入即可得到解析式;(2)利用角平分線求出,得到,從而得出點F的坐標(biāo)(3,5),再延長延長CD至點,可使,得到(-8,8),求出F的解析式,與直線BD的交點坐標(biāo)即為點P,此時△PFC的周長最?。唬?

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論