![IMF-第二代人工智能:人工智能與未來工作(英)_第1頁](http://file4.renrendoc.com/view11/M01/04/22/wKhkGWW3nTCAO6S7AAJM7N3mBEI493.jpg)
![IMF-第二代人工智能:人工智能與未來工作(英)_第2頁](http://file4.renrendoc.com/view11/M01/04/22/wKhkGWW3nTCAO6S7AAJM7N3mBEI4932.jpg)
![IMF-第二代人工智能:人工智能與未來工作(英)_第3頁](http://file4.renrendoc.com/view11/M01/04/22/wKhkGWW3nTCAO6S7AAJM7N3mBEI4933.jpg)
![IMF-第二代人工智能:人工智能與未來工作(英)_第4頁](http://file4.renrendoc.com/view11/M01/04/22/wKhkGWW3nTCAO6S7AAJM7N3mBEI4934.jpg)
![IMF-第二代人工智能:人工智能與未來工作(英)_第5頁](http://file4.renrendoc.com/view11/M01/04/22/wKhkGWW3nTCAO6S7AAJM7N3mBEI4935.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
Gen-AI:Artificial
IntelligenceandtheFutureofWork
PreparedbyMauroCazzaniga,FlorenceJaumotte,LongjiLi,
GiovanniMelina,AugustusJ.Panton,CarloPizzinelli,Emma
Rockall,andMarinaM.Tavares
SDN/2024/001
IMFStaffDiscussionNotes(SDNs)showcase
policy-relatedanalysisandresearchbeing
developedbyIMFstaffmembersandare
publishedtoelicitcommentsandtoencourage
debate.TheviewsexpressedinStaffDiscussion
Notesarethoseoftheauthor(s)anddonot
necessarilyrepresenttheviewsoftheIMF,
itsExecutiveBoard,orIMFmanagement.
2024
JAN
-
SDN/2024/001
?2024InternationalMonetaryFund
IMFStaffDiscussionNotes
ResearchDepartment
Gen-AI:ArtificialIntelligenceandtheFutureofWork
PreparedbyMauroCazzaniga,FlorenceJaumotte,LongjiLi,GiovanniMelina,AugustusJ.Panton,CarloPizzinelli,EmmaRockall,andMarinaM.Tavares*
AuthorizedfordistributionbyPierre-OlivierGourinchas
January2024
IMFStaffDiscussionNotes(SDNs)showcasepolicy-relatedanalysisandresearchbeing
developedbyIMFstaffmembersandarepublishedtoelicitcommentsandtoencouragedebate.
TheviewsexpressedinStaffDiscussionNotesarethoseoftheauthor(s)anddonotnecessarilyrepresenttheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.
ABSTRACT:Artificialintelligence(AI)hasthepotentialtoreshapetheglobaleconomy,especiallyintherealmoflabormarkets.AdvancedeconomieswillexperiencethebenefitsandpitfallsofAIsoonerthanemerging
marketanddevelopingeconomies,largelybecausetheiremploymentstructureisfocusedoncognitive-
intensiveroles.TherearesomeconsistentpatternsconcerningAIexposure:womenandcollege-educated
individualsaremoreexposedbutalsobetterpoisedtoreapAIbenefits,andolderworkersarepotentiallylessabletoadapttothenewtechnology.LaborincomeinequalitymayincreaseifthecomplementaritybetweenAIandhigh-incomeworkersisstrong,andcapitalreturnswillincreasewealthinequality.However,ifproductivitygainsaresufficientlylarge,incomelevelscouldsurgeformostworkers.Inthisevolvinglandscape,advanced
economiesandmoredevelopedemergingmarketeconomiesneedtofocusonupgradingregulatory
frameworksandsupportinglaborreallocationwhilesafeguardingthoseadverselyaffected.Emergingmarketanddevelopingeconomiesshouldprioritizethedevelopmentofdigitalinfrastructureanddigitalskills.
RECOMMENDEDCITATION:Cazzanigaandothers.2024.“Gen-AI:ArtificialIntelligenceandtheFutureofWork.”IMFStaffDiscussionNoteSDN2024/001,InternationalMonetaryFund,Washington,DC.
ISBN:979-8-40026-254-8
JELClassificationNumbers:E24,J24,J31,O33,O38
Keywords:
ArtificialIntelligence,LaborMarket,JobDisplacement,Income
Inequality,AdvancedEconomies,EmergingMarketEconomies,Low-IncomeDevelopingCountries
Author’sE-MailAddress:
mauro98cazzaniga@,FJaumotte@,LLi4@,
GMelina@,APanton@,CPizzinelli@,ERockall@,MMendestavares@
*TheauthorsthankPierre-OlivierGourinchasandAntonioSpilimbergoforfeedbackandguidanceandmanyIMFcolleaguesfor
usefulcomments.TheviewsexpressedhereinarethoseoftheauthorsandshouldnotbeattributedtotheIMF,itsExecutiveBoard, oritsmanagement.Anyremainingerrorsaretheresponsibilityoftheauthors.
-
INTERNATIONALMONETARYFUND
1
Contents
ExecutiveSummary
2
I.Introduction
3
II.AIExposureandComplementarity
5
III.WorkerReallocationintheAI-InducedTransformation
11
IV.AI,Productivity,andInequality
15
V.AIPreparedness
19
VI.ConclusionsandPolicyConsiderations
22
AnnexI.Data
26
Annex2.AdditionalInformationonAIOccupationalExposureandPotentialComplementarity
28
Annex3.MethodologyfortheWorkerTransitionAnalysis
29
Annex4.ModelDetails
32
Annex5.AIPreparednessIndex
34
References
36
Boxes
1.AIOccupationalExposureandPotentialComplementarity1
24
2.Artificial-Intelligence-ledInnovationandthePotentialforGreaterInclusion1
25
Figures
1.EmploymentSharesbyAIExposureandComplementarity:CountryGroupsandSelect
8
2.EmploymentSharebyExposureandComplementarity(SelectedCountries)
9
3.ShareofEmploymentinHigh-ExposureOccupationsbyDemographicGroups
10
4.ShareofEmploymentinHigh-ExposureOccupationsbyIncomeDeciles
11
5.OccupationalTransitionsforCollege-EducatedHigh-ExposureWorkersforBRAandGBR
12
6.LifeCycleProfilesofEmploymentSharesbyEducationLevelforBrazilandtheUnited
13
7.1-YearRe-EmploymentProbabilityofSeparatedWorkers
14
8.EstimatedWagePremiafromOccupationChanges
15
9.ExposuretoAIandtoAutomationandIncomeintheUK
17
10.ChangeinTotalIncomebyIncomePercentile
18
11.ImpactonAggregates(Percentage
18
12.AIPreparednessIndexand
20
13.ICTEmploymentShareandIndividualComponentsoftheAIPreparednessIndex
21
STAFFDISCUSSIONNOTESGen-AI:ArtificialIntelligenceandtheFutureofWork
INTERNATIONALMONETARYFUND
2
ExecutiveSummary
Artificialintelligence(AI)issettoprofoundlychangetheglobaleconomy,withsomecommentators
seeingitasakintoanewindustrialrevolution.Itsconsequencesforeconomiesandsocietiesremainhardtoforesee.Thisisespeciallyevidentinthecontextoflabormarkets,whereAIpromisestoincreaseproductivitywhilethreateningtoreplacehumansinsomejobsandtocomplementtheminothers.
Almost40percentofglobalemploymentisexposedtoAI,withadvancedeconomiesatgreaterriskbutalsobetterpoisedtoexploitAIbenefitsthanemergingmarketanddevelopingeconomies.Inadvancedeconomies,about60percentofjobsareexposedtoAI,duetoprevalenceofcognitive-task-orientedjobs.A
newmeasureofpotentialAIcomplementaritysuggeststhat,ofthese,abouthalfmaybenegativelyaffectedbyAI,whiletherestcouldbenefitfromenhancedproductivitythroughAIintegration.Overallexposureis40
percentinemergingmarketeconomiesand26percentinlow-incomecountries.Althoughmanyemerging
marketanddevelopingeconomiesmayexperiencelessimmediateAI-relateddisruptions,theyarealsolessreadytoseizeAI’sadvantages.Thiscouldexacerbatethedigitaldivideandcross-countryincomedisparity.
AIwillaffectincomeandwealthinequality.Unlikepreviouswavesofautomation,whichhadthestrongesteffectonmiddle-skilledworkers,AIdisplacementrisksextendtohigher-wageearners.However,potentialAIcomplementarityispositivelycorrelatedwithincome.Hence,theeffectonlaborincomeinequalitydepends
largelyontheextenttowhichAIdisplacesorcomplementshigh-incomeworkers.Modelsimulationssuggestthat,withhighcomplementarity,higher-wageearnerscanexpectamore-than-proportionalincreaseintheir
laborincome,leadingtoanincreaseinlaborincomeinequality.Thiswouldamplifytheincreaseinincomeandwealthinequalitythatresultsfromenhancedcapitalreturnsthataccruetohighearners.Countries’choices
regardingthedefinitionofAIpropertyrights,aswellasredistributiveandotherfiscalpolicies,willultimatelyshapeitsimpactonincomeandwealthdistribution.
Thegainsinproductivity,ifstrong,couldresultinhighergrowthandhigherincomesformostworkers.
Owingtocapitaldeepeningandaproductivitysurge,AIadoptionisexpectedtoboosttotalincome.IfAI
stronglycomplementshumanlaborincertainoccupationsandtheproductivitygainsaresufficientlylarge,
highergrowthandlabordemandcouldmorethancompensateforthepartialreplacementoflabortasksbyAI,andincomescouldincreasealongmostoftheincomedistribution.
College-educatedworkersarebetterpreparedtomovefromjobsatriskofdisplacementtohigh-
complementarityjobs;olderworkersmaybemorevulnerabletotheAI-driventransformation.IntheUKandBrazil,forinstance,college-educatedindividualshistoricallymovedmoreeasilyfromjobsnowassessedtohavehighdisplacementpotentialtothosewithhighcomplementarity.Incontrast,workerswithout
postsecondaryeducationshowreducedmobility.Youngerworkerswhoareadaptableandfamiliarwithnew
technologiesmayalsobebetterabletoleveragethenewopportunities.Incontrast,olderworkersmaystrugglewithreemployment,adaptingtotechnology,mobility,andtrainingfornewjobskills.
ToharnessAI'spotentialfully,prioritiesdependoncountries’developmentlevels.AnovelAI
preparednessindexshowsthatadvancedandmoredevelopedemergingmarketeconomiesshouldinvestinAI
innovationandintegration,whileadvancingadequateregulatoryframeworkstooptimizebenefitsfrom
increasedAIuse.Forlesspreparedemergingmarketanddevelopingeconomies,foundationalinfrastructuraldevelopmentandbuildingadigitallyskilledlaborforceareparamount.Foralleconomies,socialsafetynetsandretrainingforAI-susceptibleworkersarecrucialtoensureinclusivity.
STAFFDISCUSSIONNOTESGen-AI:ArtificialIntelligenceandtheFutureofWork
INTERNATIONALMONETARYFUND
3
I.Introduction
Artificialintelligence(AI)promisestoboostproductivityandgrowth,butitsimpactoneconomiesandsocietiesisuncertain,varyingbyjobrolesandsectors,withthepotentialtoamplifydisparities.Asapositiveproductivityshock,AIwillexpandeconomies’productionfrontiersandwillleadtoreallocations
betweenlaborandcapitalwhiletriggeringpotentiallyprofoundchangesinmanyjobsandsectors.AIoffersunprecedentedopportunitiesforsolvingcomplexproblemsandimprovingtheaccuracyofpredictions,
enhancingdecision-making,boostingeconomicgrowth,andimprovinglives.However,preciselybecauseofitsvastandflexibleapplicabilityinnumerousdomains,theimplicationsforeconomiesandsocietiesareuncertain(IlzetzkiandJain2023).
AIrepresentsawidespectrumoftechnologiesdesignedtoenablemachinestoperceive,interpret,act,andlearnwiththeintenttoemulatehumancognitiveabilities.Acrossthisspectrum,generativeAI(GenAI)includessystemssuchassophisticatedlargelanguagemodelsthatcancreatenewcontent,rangingfromtexttoimages,bylearningfromextensivetrainingdata.OtherAImodels,incontrast,aremorespecialized,
focusingondiscretetaskssuchaspatternidentification.Meanwhile,automationischaracterizedbyitsfocuson
optimizingrepetitivetaskstoboostproductivity,ratherthanproducingnewcontent.ThefieldofAIis
experiencingaswiftevolution,especiallywiththeadventofGenAI,whichhasbroadenedAI'spotentialapplications.Thissuggeststhatitsimpactwillexpandtoreshapejobfunctionsandthedivisionoflabor.
OnecriticaldimensiontoconsideristhesocietalacceptabilityofAI.Acceptabilitymayvarydependingonjobroles.SomeprofessionsmayseamlesslyintegrateAItools,whileotherscouldfaceresistancebecauseofcultural,ethical,oroperationalconcerns.Thisuncertaintybecomesespeciallypronouncedinlabormarkets.
AlthoughAIholdsthepotentialforproduction-orientedapplications,itseffectwilllikelybemixed.Insome
sectorswherehumanoversightofAIisnecessary,itcouldamplifyworkerproductivityandlabordemand.
Conversely,inothersectors,AImightpavethewayforsignificantjobdisplacements.Ariseinaggregate
productivityoftheeconomycouldhoweverstrengthenoveralleconomicdemand,potentiallycreatingmorejobopportunitiesformostworkersinarippleeffect.Moreover,thisevolutioncouldalsoleadtotheemergenceofnewsectorsandjobroles—andthedisappearanceofothers—transcendingmereintersectoralreallocation.
Beyondimmediatejobeffects,anothercriticaleconomicdimensionisthecapitalincomechannel.AsAIdrivesefficiencyandinnovations,thosewhoownAItechnologiesorhavestakesinAI-drivenindustriesmay
experienceincreasedcapitalincome.Thisshiftcouldpotentiallyexacerbateinequalities.
AIchallengesthebeliefthattechnologyaffectsmainlymiddleand,insomecases,low-skilljobs:its
advancedalgorithmscannowaugmentorreplacehigh-skillrolespreviouslythoughtimmuneto
automation.Whilehistoricalwavesofautomationandtheintegrationofinformationtechnologyaffected
predominantlyroutinetasks,AI'scapabilitiesextendtocognitivefunctions,enablingittoprocessvastamounts
ofdata,recognizepatterns,andmakedecisions.Asaresult,evenhigh-skilloccupations,whichwere
previouslyconsideredimmunetoautomationbecauseoftheircomplexityandrelianceondeepexpertisenowfacepotentialdisruption.1Jobsthatrequirenuancedjudgment,creativeproblem-solving,orintricatedata
1
Anotherhistoricalexampleoftechnologythathittherelativelyeducatedistheintroductionofthecalculator.Beforethewidespread
useofcalculators,theroleofaccountantswasconsideredamedium-tohigh-skilljob,giventhatasignificantportionofthe
populationwasuneducated.Theintroductionofcalculatorsledtoareductioninthenumberofaccountants(WoottonandKemmerer2007).
STAFFDISCUSSIONNOTESGen-AI:ArtificialIntelligenceandtheFutureofWork
INTERNATIONALMONETARYFUND
4
interpretation—traditionallythedomainofhighlyeducatedprofessionals—maynowbeaugmentedorevenreplacedbyadvancedAIalgorithms,potentiallyexacerbatinginequalityacrossandwithinoccupations.Thisshiftchallengestheconventionalwisdomthattechnologicaladvancesthreatenprimarilylower-skilljobsandpointstoabroaderanddeepertransformationofthelabormarketthanbyprevioustechnologicalrevolutions.
TheimpactofAIisalsolikelytodiffersignificantlyacrosscountriesatdifferentlevelsofdevelopmentorwithdifferenteconomicstructures.Advancedeconomies,withtheirmatureindustriesandservice-driveneconomies,typicallyhaveahigherconcentrationofjobsinsectorsthatrequirecomplexcognitivetasks.Theseeconomiesarethereforebothmoresusceptibleto,yetbetterpositionedtobenefitfrom,AIinnovations.
Conversely,emergingmarketanddevelopingeconomies,oftenstillreliantonmanuallaborandtraditional
industries,mayinitiallyfacefewerAI-induceddisruptions.However,theseeconomiesmayalsomissouton
earlyAI-drivenproductivitygains,giventheirlackofinfrastructureandaskilledworkforce.Overtime,theAI
dividecouldexacerbateexistingeconomicdisparities,withadvancedeconomiesharnessingAIforcompetitiveadvantagewhileemergingmarketanddevelopingeconomiesgrapplewithintegratingAIintotheirgrowth
models.
ToinformthediscussiononthepotentialimpactofAIonthefutureofworkandwhichpoliciescountriesshouldenactinresponse,thisnoteaimstoanswersixquestions.
(1)WhichcountriesaremoreexposedtoAIadoption?Whichcountriesarelikelytobenefitmost?
(2)HowdifferentlywillAIaffectworkerswithincountries?Whichsegmentsofworkersarelikelytothriveandwhichfacemorerisks?
(3)Historically,howfrequentlydidworkersshiftbetweenrolesnowfacingvaryingAIexposure?Whatinsightsdotheseshiftsrevealaboutlaboradaptability?
(4)InwhatwayscouldAIreshapeincomeandwealthinequality?
(5)Whatisthepotentialimpactforgrowthandproductivity?
(6)WhichcountriesappearbetterpreparedfortheAItransition?HowcanpoliciesmaximizegainsandmitigatelikelyAI-relatedchallenges?
ThisnotebuildsonagrowingbodyofworkthatexplorestheimpactofAIonlabormarketsandthe
macroeconomy.ManyempiricalstudiessofarhavefocusedlargelyontheUS,findingthatmanyofthetasksofasignificantportionoftheworkforce,includingthoseofhigh-skilledworkers,couldbesubstantiallyreplacedbyAI(forexample,Felten,Raj,andSeamans2021,2023;Eloundouandothers2023;Webb2020).Afew
studies(OECD2023;Albanesiandothers2023;BriggsandKodnani2023)adoptacross-countryapproach;Gmyrek,Berg,andBescond(2023)undertakeacomprehensivereviewofemergingmarketeconomiesandfindlessexposuretoAIthaninadvancedeconomies;Colombo,Mercorio,andMezzanzanica(2019)focusontheItalianlabormarket.Thesestudiesapplyempiricalapproachessimilartothoseusedintheautomation
literature(forexample,AutorandDorn2013,AcemogluandRestrepo2022,DasandHilgenstock2022).
Thisnotecontributestotheexistingliteratureinfoursignificantways.First,whilepreviousAIexposure
measuresoftenimplicitlyequateexposurewithsubstitutabilityofhumantasks,thisnoteattemptstoassessthepotentialforcomplementarityandsubstitutionwithlabor,usingtheapproachdevelopedbyPizzinelliandothers(2023).Thismethodconsidersthewidersocial,ethical,andphysicalcontextofoccupations,alongwith
requiredskilllevels,todiscernwhetherAImaycomplementorreplaceroles.Thisaddstorecentstudiesthathaveattemptedtomakethisdistinctionusingapurelytask-basedframework(AcemogluandRestrepo2018,2022;Gmyrek,Bert,andBescond2023).Second,thenoteofferssomeinitialinsightintothepotentialfor
INTERNATIONALMONETARYFUND
5
workerstomakethetransitionfromoccupationsatriskofdisplacementtothosewithhighAI-complementaritypotential,drawingonmicrodataforoneadvancedandoneemergingmarketeconomy.Third,ittakesadeep
lookathowAImayaffectincomeandwealthinequalitywithincountries.ItdissectsAIexposurepatternsacrossdemographicsandearningslevelsandusesamodel-basedanalysistoevaluateAI'simpactonlaborand
capitalincomeinequality,aswellasonincomelevels.Last,thenoteexamineshowAIpreparednessforthis
technologicalshiftmaydifferacrosscountriesatdifferentincomelevels,usingaverylargesampleofadvancedandemergingmarketanddevelopingeconomies.
Withthisanalysistherearesomeimportantcaveats.First,althoughinthemodelanalysisactivitygrowsinoccupationswithhighAIcomplementarityandfallsinlow-complementarityoccupations—mimickingsectoral
reallocations—theanalysisonAIexposureassumesthatsectorsizesarefixedandthatthetasksrequiredineachoccupationareunchanged.Consequently,theresultsaremorepertinentfortheshorttomediumterm.
Overlongerhorizons,workerswilllikelymigrateacrossdifferentsectorsandroles,oracquirenewskills,andjobswillevolve.Inaddition,theanalysisassumesthatworkerswithinthesameoccupationwillbeaffectedinthesameway,buttherecanbevariationintheeffectsofAI.AImayalsoaffectfirmdynamicsandmarket
concentration(Babinaandothers,forthcoming),drivinginequalitybetweenworkersatdifferentfirms.Second,thestudyreliesonthepremisethattasksperformedwithinsimilaroccupationsarehomogenousaroundthe
world,whiletherecanbesignificantcross-countryvariations.Third,theapproachabstractsfromlinkages
acrossoccupationsandcountries(tradelinkages),aswellasfromcross-borderspilloversofAIexposure.Last,whiletheanalysesonworkers’AIexposureandsocieties’preparednessuseempiricalapproaches,the
potentialimpactsoninequalityandproductivityareanalyzedwithamodel.Thelatterthereforedependon
potentiallystrongcalibrationassumptions.ThepaceofAIadoption,influencedbythetimeneededbyfirmstoinvestinanynecessaryphysicalcapitalandthereorganizationrequiredtocapitalizeonAI,isdifficultto
foresee.Likewise,thetimerequiredtoexertaggregatemacroeconomiceffects,theimpactonintersectoral
reallocationoffactorsforproduction,thebirthofnewindustries,andAI’sexactimplicationsforeconomiesandsocietiesarechallengingtopredict.Anyestimateembodiesalevelofuncertaintyreminiscentofpast
introductionsofgeneral-purposetechnologies,suchaselectricity.Thisuncertaintyappliesalsototheresultsofthisnote.
Theremainderofthenoteisstructuredasfollows.SectionIIillustratestheconceptualframeworkofAIexposureandcomplementarityandattemptstoquantifyempiricallythedegreeofexposuretoand
complementaritywithAIacrosscountriesandgroupsofworkerswithincountries.SectionIIIexamineshoweasilyworkershavehistoricallyshiftedacrossrolesnowfacingvaryingdegreesofAIexposureand
complementarity.SectionIVusesamodeltoprojectpotentialimplicationsofAIadoptionforproductivity,incomes,andinequality.SectionVassessescountries’AIpreparednessinkeypolicyareas.SectionVIconcludesandpresentspolicyconsiderations.
II.AIExposureandComplementarity
II.1ConceptualFramework
AssessingtheimpactofAIonemploymentiscomplexbecauseofitsswiftevolution,uncertaintyin
integrationacrossproductionprocesses,andshiftingsocietalperceptions.GiventherapidadvanceandevolvingcapabilitiesofAI-basedtechnologies,whichproductionprocesseswillintegrateAIandwhichhuman
STAFFDISCUSSIONNOTESGen-AI:ArtificialIntelligenceandtheFutureofWork
INTERNATIONALMONETARYFUND
6
taskswillbereplacedorenhancedremainuncertain.Overtime,thechangingsocialacceptabilityofAIcouldalsoaffectitsintegrationintoproductionprocesses.
Thisnoterefinesacommonlyusedconceptualframeworktobettermeasurehumanwork’sexposure
to,andcomplementaritywith,AI.Tostudytheeffectoftechnologicalinnovationonjobs,itisstandardto
conceptualizeindividualoccupationsasabundleoftasksandtoconsiderwhichtaskscanbereplacedor
complementedbytechnology(seeforinstanceAcemogluandRestrepo2022;andMoll,Rachel,andRestrepo2022forrecentapplications).Felten,Raj,andSeamans(2021,2023)define“exposure”toAIasthedegreeofoverlapbetweenAIapplicationsandrequiredhumanabilitiesineachoccupation.Theanalysisrefinesthis
approachbyaugmentingitwithPizzinelliandothers’(2023)indexofpotentialAIcomplementarity.Thisindexleveragesinformationonthesocial,ethical,andphysicalcontextofoccupations,alongwithrequiredskilllevels
(seeBox1fordetails).Theindexreflectsanoccupation’slikelydegreeofshieldingfromAI-drivenjob
displacementand,whenpairedwithhighAIexposure,givesanindicationofAIcomplementaritypotential.Forexample,becauseofadvancesintextualanalysis,judgesarehighlyexposedtoAI,buttheyarealsohighly
shieldedfromdisplacementbecausesocietyiscurrentlyunlikelytodelegatejudicialrulingstounsupervisedAI.Consequently,AIwilllikelycomplementjudges,increasingtheirproductivityratherthanreplacingthem.2
Conversely,clericalworkers,whoarealsoveryexposedtoAIbuthavealowerlevelofshielding,aremoreatriskofbeingdisplaced.Thelevelofshieldingandcomplementaritywilllikelyevolveovertimeandatadifferentpaceacrosscountries,reflectinghigherAIaccuracy,whichwilldecreasethechancesfor“hallucinat
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專利代理居間合同樣本
- 物業(yè)管理委托合同
- 家庭室內(nèi)外裝修合同書
- 多模式跨境電子商務解決方案策劃與設計全案指南
- 研發(fā)項目管理作業(yè)指導書
- 生物技術與實驗室技能作業(yè)指導書
- 電線電纜購銷合同
- 2025年天津年貨運從業(yè)資格證考試從業(yè)從業(yè)資格資格題庫及答案
- 2025年烏魯木齊貨運從業(yè)資格考試題目大全
- 小學青島版一年級數(shù)學上冊口算練習題總匯
- 2024年08月浙江2024渤海銀行杭州分行秋季校園招考筆試歷年參考題庫附帶答案詳解
- 2025年潔凈室工程師培訓:從理論到實踐的全面提升
- 2025年臨床醫(yī)師定期考核必考復習題庫及答案(620題)
- 2025年物業(yè)公司安全生產(chǎn)工作計劃(5篇)
- 2025社保政策培訓
- 電器儀表人員培訓課件
- 2025年中小學春節(jié)安全教育主題班會課件
- 人教版九年級數(shù)學上冊圓《切線的證明方法及模型》示范公開課教學設計
- 2023年工程制圖習題集
- 計量經(jīng)濟學練習題
- 除數(shù)是兩位數(shù)的除法練習題(84道)
評論
0/150
提交評論