2024屆遼寧省沈陽市皇姑區(qū)數學九年級第一學期期末統(tǒng)考試題含解析_第1頁
2024屆遼寧省沈陽市皇姑區(qū)數學九年級第一學期期末統(tǒng)考試題含解析_第2頁
2024屆遼寧省沈陽市皇姑區(qū)數學九年級第一學期期末統(tǒng)考試題含解析_第3頁
2024屆遼寧省沈陽市皇姑區(qū)數學九年級第一學期期末統(tǒng)考試題含解析_第4頁
2024屆遼寧省沈陽市皇姑區(qū)數學九年級第一學期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆遼寧省沈陽市皇姑區(qū)數學九年級第一學期期末統(tǒng)考試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.下列說法正確的是()A.任意擲一枚質地均勻的硬幣10次,一定有5次正面向上B.通過拋擲一枚均勻的硬幣確定誰先發(fā)球的比賽規(guī)則是不公平的C.“367人中至少有2人生日相同”是必然事件D.四張分別畫有等邊三角形、平行四邊形、菱形、圓的卡片,從中隨機抽取一張,恰好抽到中心對稱圖形的概率是.2.對于反比例函數,下列說法錯誤的是()A.它的圖象分別位于第二、四象限B.它的圖象關于成軸對稱C.若點,在該函數圖像上,則D.的值隨值的增大而減小3.已知拋物線在平面直角坐標系中的位置如圖所示,則下列結論中,正確的是()A. B. C. D.4.參加一次聚會的每兩人都握了一次手,所有人共握手10

次,若共有

x

人參加聚會,則根據題意,可列方程()A. B. C. D.5.一副三角板如圖放置,它們的直角頂點、分別在另一個三角板的斜邊上,且,則的度數為()A. B. C. D.6.如圖,已知BD是⊙O直徑,點A、C在⊙O上,,∠AOB=60°,則∠BDC的度數是()A.20° B.25° C.30° D.40°7.如圖,的外接圓的半徑是.若,則的長為()A. B. C. D.8.關于x的一元二次方程有實數根,則m的取值范圍是()A. B.C.且 D.且9.在平面直角坐標系中,點A(0,2)、B(a,a+2)、C(b,0)(a>0,b>0),若AB=且∠ACB最大時,b的值為()A. B. C. D.10.如圖,正六邊形內接于圓,圓半徑為2,則六邊形的邊心距的長為()A.2 B. C.4 D.11.已知點P在半徑為5cm的圓內,則點P到圓心的距離可以是A.4cm B.5cm C.6cm D.7cm12.某閉合電路中,電源的電壓為定值,電流I(A)與電阻R(Ω)成反比例.圖表示的是該電路中電流I與電阻R之間函數關系的圖象,則用電阻R表示電流I的函數解析式為()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,點A、B、C、D都在⊙O上,∠ABC=90°,AD=4,CD=3,則⊙O的半徑的長是______.14.如圖,的弦,半徑交于點,是的中點,且,則的長為__________.15.如圖,BC⊥y軸,BC<OA,點A、點C分別在x軸、y軸的正半軸上,D是線段BC上一點,BD=OA=2,AB=3,∠OAB=45°,E、F分別是線段OA、AB上的兩動點,且始終保持∠DEF=45°,將△AEF沿一條邊翻折,翻折前后兩個三角形組成的四邊形為菱形,則線段OE的值為_____.16.如圖,飛鏢游戲板中每一塊小正方形除顏色外都相同.若某人向游戲板投擲飛鏢一次(假設飛鏢落在游戲板上),則飛鏢落在陰影部分的概率是_________.17.我軍偵察員在距敵方120m的地方發(fā)現敵方的一座建筑物,但不知其高度又不能靠近建筑物物測量,機靈的偵察員將自己的食指豎直舉在右眼前,閉上左眼,并將食指前后移動,使食指恰好將該建筑物遮住,如圖所示.若此時眼睛到食指的距離約為40cm,食指的長約為8cm,則敵方建筑物的高度約是_______m.18.如圖,Rt△ABC中,∠ACB=90°,AC=BC=4,D為線段AC上一動點,連接BD,過點C作CH⊥BD于H,連接AH,則AH的最小值為_____.三、解答題(共78分)19.(8分)甲、乙兩臺機器共同加工一批零件,一共用了小時.在加工過程中乙機器因故障停止工作,排除故障后,乙機器提高了工作效率且保持不變,繼續(xù)加工.甲機器在加工過程中工作效率保持不變.甲、乙兩臺機器加工零件的總數(個)與甲加工時間之間的函數圖象為折線,如圖所示.(1)這批零件一共有個,甲機器每小時加工個零件,乙機器排除故障后每小時加工個零件;(2)當時,求與之間的函數解析式;(3)在整個加工過程中,甲加工多長時間時,甲與乙加工的零件個數相等?20.(8分)如圖,BC是半圓O的直徑,D是弧AC的中點,四邊形ABCD的對角線AC、BD交于點E.(1)求證:△DCE∽△DBC;(2)若CE=,CD=2,求直徑BC的長.21.(8分)已知關于x的一元二次方程有兩個實數根x1,x1.(1)求實數k的取值范圍;(1)是否存在實數k使得成立?若存在,請求出k的值;若不存在,請說明理由.22.(10分)如圖,在中,,點為邊的中點,請按下列要求作圖,并解決問題:(1)作點關于的對稱點;(2)在(1)的條件下,將繞點順時針旋轉,①面出旋轉后的(其中、、三點旋轉后的對應點分別是點、、);②若,則________.(用含的式子表示)23.(10分)如圖,在等腰直角△ABC中,∠ACB=90°,AC=BC=;(1)作⊙O,使它過點A、B、C(要求尺規(guī)作圖保留作圖痕跡);(2)在(1)所作的圓中,求圓心角∠BOC的度數和該圓的半徑24.(10分)先化簡,后求值:,其中.25.(12分)如圖,放置在水平桌面上的臺燈的燈臂AB長為40cm,燈罩BC長為30cm,底座厚度為2cm,燈臂與底座構成的∠BAD=60°,使用發(fā)現,光線最佳時燈罩BC與水平線所成的角為30°,此時燈罩頂端C到桌面的高度CE是多少cm?26.如圖,分別以△ABC的邊AC和BC為腰向外作等腰直角△DAC和等腰直角△EBC,連接DE.(1)求證:△DAC∽△EBC;(2)求△ABC與△DEC的面積比.

參考答案一、選擇題(每題4分,共48分)1、C【分析】利用隨機事件和必然事件的定義對A、C進行判斷;利用比較兩事件的概率的大小判斷游戲的公平性對B進行判斷;利用中心對稱的性質和概率公式對D進行判斷.【詳解】A、任意擲一枚質地均勻的硬幣10次,可能有5次正面向上,所以A選項錯誤;B、通過拋擲一枚均勻的硬幣確定誰先發(fā)球的比賽規(guī)則是公平的,所以B選項錯誤;C、“367人中至少有2人生日相同”是必然事件,所以C選項正確;D、四張分別畫有等邊三角形、平行四邊形、菱形、圓的卡片,從中隨機抽取一張,恰好抽到中心對稱圖形的概率是,所以D選項錯誤.故選:C.【點睛】本題考查了隨機事件以及概率公式和游戲公平性:判斷游戲公平性需要先計算每個事件的概率,然后比較概率的大小,概率相等就公平,否則就不公平.2、D【分析】根據反比例函數的性質對各選項逐一分析即可.【詳解】解:反比例函數,,圖像在二、四象限,故A正確.反比例函數,當時,圖像關于對稱;當時,圖像關于對稱,故B正確當,的值隨值的增大而增大,,則,故C正確在第二象限或者第四象限,的值隨值的增大而增大,故D錯誤故選D【點睛】本題主要考查了反比例函數的性質.3、D【解析】試題分析:由拋物線開口向上可知a>0,故A錯誤;由對稱軸在軸右側,可知a、b異號,所以b<0,故B錯誤;由圖象知當x=1時,函數值y小于0,即a+b+c<0,故C錯誤;由圖象知當x=-2時,函數值y大于0,即4a-2b+c>0,故D正確;故選D考點:二次函數中和符號4、C【分析】如果人參加了這次聚會,則每個人需握手次,人共需握手次;而每兩個人都握了一次手,因此一共握手次.【詳解】設人參加了這次聚會,則每個人需握手次,依題意,可列方程.故選C.【點睛】本題主要考查一元二次方程的應用.5、C【分析】根據平行線的性質,可得∠FAC=∠C=45°,然后根據三角形外角的性質,即可求出∠1.【詳解】解:由三角板可知:∠F=30°,∠C=45°∵∴∠FAC=∠C=45°∴∠1=∠FAC+∠F=75°故選:C.【點睛】此題考查的是平行線的性質和三角形外角的性質,掌握兩直線平行,內錯角相等和三角形的一個外角等于與它不相鄰的兩個內角之和是解決此題的關鍵.6、C【詳解】∵,∠AOB=60°,∴∠BDC=∠AOB=30°.故選C.7、A【分析】由題意連接OA、OB,根據圓周角定理求出∠AOB,利用勾股定理進行計算即可.【詳解】解:連接OA、OB,由圓周角定理得:∠AOB=2∠C=90°,所以的長為.故選:A.【點睛】本題考查的是三角形的外接圓和外心的概念和性質,掌握圓周角定理和勾股定理是解題的關鍵.8、D【解析】試題分析:∵關于x的一元二次方程有實數根,∴且△≥0,即,解得,∴m的取值范圍是且.故選D.考點:1.根的判別式;2.一元二次方程的定義.9、B【分析】根據圓周角大于對應的圓外角可得當的外接圓與軸相切時,有最大值,此時圓心F的橫坐標與C點的橫坐標相同,并且在經過AB中點且與直線AB垂直的直線上,根據FB=FC列出關于b的方程求解即可.【詳解】解:∵AB=,A(0,2)、B(a,a+2)∴,解得a=4或a=-4(因為a>0,舍去)∴B(4,6),設直線AB的解析式為y=kx+2,將B(4,6)代入可得k=1,所以y=x+2,利用圓周角大于對應的圓外角得當的外接圓與軸相切時,有最大值.如下圖,G為AB中點,,設過點G且垂直于AB的直線,將代入可得,所以.設圓心,由,可知,解得(已舍去負值).故選:B.【點睛】本題考查圓的綜合題,一次函數的應用和已知兩點坐標,用勾股定理求兩點距離.能結合圓的切線和圓周角定理構建圖形找到C點的位置是解決此題的關鍵.10、D【分析】連接OB、OC,證明△OBC是等邊三角形,得出即可求解.【詳解】解:連接OB、OC,如圖所示:則∠BOC=60°,∵OB=OC,∴△OBC是等邊三角形,∴BC=OB=2,∵OM⊥BC,∴△OBM為30°、60°、90°的直角三角形,∴,故選:D.【點睛】本題考查了正多邊形和圓、正六邊形的性質、垂徑定理、勾股定理、等邊三角形的判定與性質;熟練掌握正六邊形的性質,證明三角形是等邊三角形和運用垂徑定理求出BM是解決問題的關鍵.11、A【分析】直接根據點與圓的位置關系進行判斷.【詳解】點P在半徑為5cm的圓內,點P到圓心的距離小于5cm,所以只有選項A符合,選項B、C、D都不符合;故選A.【點睛】本題考查了點與圓的位置關系:點的位置可以確定該點到圓心距離與半徑的關系,反過來已知點到圓心距離與半徑的關系可以確定該點與圓的位置關系.12、C【解析】設,那么點(3,2)滿足這個函數解析式,∴k=3×2=1.∴.故選C二、填空題(每題4分,共24分)13、2.5【分析】連接AC,根據∠ABC=90°可知AC是⊙O的直徑,故可得出∠D=90°,再由AD=4,CD=3可求出AC的長,進而得出結論.【詳解】解:如圖,連接AC,∵∠ABC=90°,

∴AC是⊙O的直徑,

∴∠D=90°,

∵AD=4,CD=3,

∴AC=5,∴⊙O的半徑=2.5,故答案為:2.5.【點睛】本題考查的是圓周角定理,熟知直徑所對的圓周角是直角是解答此題的關鍵.14、2【分析】連接OA,先根據垂徑定理求出AO的長,再設ON=OA,則MN=ON-OM即可得到答案.【詳解】解:如圖所示,連接OA,∵半徑交于點,是的中點,∴AM=BM==4,∠AMO=90°,∴在Rt△AMO中OA==5.∵ON=OA,∴MN=ON-OM=5-3=2.故答案為2.【點睛】本題考查的是垂徑定理及勾股定理,根據題意作出輔助線,構造出直角三角形是解答此題的關鍵.15、6﹣或6或9﹣3【分析】可得到∠DOE=∠EAF,∠OED=∠AFE,即可判定△DOE∽△EAF,分情況進行討論:①當EF=AF時,△AEF沿AE翻折,所得四邊形為菱形,進而得到OE的長;②當AE=AF時,△AEF沿EF翻折,所得四邊形為菱形,進而得到OE的長;③當AE=EF時,△AEF沿AF翻折,所得四邊形為菱形,進而得到OE的長.【詳解】解:連接OD,過點BH⊥x軸,①沿著EA翻折,如圖1:∵∠OAB=45°,AB=3,∴AH=BH=ABsin45°=,∴CO=,∵BD=OA=2,∴BD=2,OA=8,∴BC=8﹣,∴CD=6﹣;∵四邊形FENA是菱形,∴∠FAN=90°,∴四邊形EFAN是正方形,∴△AEF是等腰直角三角形,∵∠DEF=45°,∴DE⊥OA,∴OE=CD=6﹣;②沿著AF翻折,如圖2:∴AE=EF,∴B與F重合,∴∠BDE=45°,∵四邊形ABDE是平行四邊形∴AE=BD=2,∴OE=OA﹣AE=8﹣2=6;③沿著EF翻折,如圖3:∴AE=AF,∵∠EAF=45°,∴△AEF是等腰三角形,過點F作FM⊥x軸,過點D作DN⊥x軸,∴△EFM∽△DNE,∴,∴,∴NE=3﹣,∴OE=6﹣+3﹣=9﹣3;綜上所述:OE的長為6﹣或6或9﹣3,故答案為6﹣或6或9﹣3.【點睛】此題主要考查函數與幾何綜合,解題的關鍵是熟知等腰三角形的性質、平行四邊形、菱形及正方形的性質,利用三角函數、勾股定理及相似三角形的性質進行求解.16、【分析】根據幾何概率的求法:飛鏢落在陰影部分的概率就是陰影區(qū)域的面積與總面積的比值.【詳解】∵總面積為3×3=9,其中陰影部分面積為4××1×2=4,∴飛鏢落在陰影部分的概率是,故答案為.【點睛】此題考查幾何概率,解題關鍵在于掌握運算法則.17、1【分析】如圖(見解析),過點A作,交BC于點F,利用平行線分線段成比例定理推論求解即可.【詳解】如圖,過點A作,交BC于點F由題意得則(平行線分線段成比例定理推論)即解得故答案為:1.【點睛】本題考查了平行線分線段成比例定理推論,讀懂題意,將所求問題轉化為利用平行線分線段成比例定理推論的問題是解題關鍵.18、2﹣2【分析】取BC中點G,連接HG,AG,根據直角三角形的性質可得HG=CG=BG=BC=2,根據勾股定理可求AG=2,由三角形的三邊關系可得AH≥AG﹣HG,當點H在線段AG上時,可求AH的最小值.【詳解】解:如圖,取BC中點G,連接HG,AG,∵CH⊥DB,點G是BC中點∴HG=CG=BG=BC=2,在Rt△ACG中,AG==2在△AHG中,AH≥AG﹣HG,即當點H在線段AG上時,AH最小值為2﹣2,故答案為:2﹣2【點睛】本題考查了動點問題,解決本題的關鍵是熟練掌握直角三角形中勾股定理關系式.三、解答題(共78分)19、(1);(2);(3)甲加工或時,甲與乙加工的零件個數相等.【解析】(1)觀察圖象可得零件總個數,觀察AB段可得甲機器的速度,觀察BC段結合甲的速度可求得乙的速度;(2)設當時,與之間的函數解析式為,利用待定系數法求解即可;(3)分乙機器出現故障前與修好故障后兩種情況分別進行討論求解即可.【詳解】(1)觀察圖象可知一共加工零件270個,甲機器每小時加工零件:(90-50)÷(3-1)=20個,乙機器排除故障后每小時加工零件:(270-90)÷(6-3)-20=40個,故答案為:270,20,40;設當時,與之間的函數解析式為把,,代入解析式,得解得設甲加工小時時,甲與乙加工的零件個數相等,乙機器出現故障時已加工零件50-20=30個,,;乙機器修好后,根據題意則有,,答:甲加工或時,甲與乙加工的零件個數相等.【點睛】本題考查了一次函數的應用,弄清題意,讀懂函數圖象,理清各量間的關系是解題的關鍵.20、(1)見解析;(2)2【分析】(1)由等弧所對的圓周角相等可得∠ACD=∠DBC,且∠BDC=∠EDC,可證△DCE∽△DBC;(2)由勾股定理可求DE=1,由相似三角形的性質可求BC的長.【詳解】(1)∵D是弧AC的中點,∴,∴∠ACD=∠DBC,且∠BDC=∠EDC,∴△DCE∽△DBC;(2)∵BC是直徑,∴∠BDC=90°,∴DE1.∵△DCE∽△DBC,∴,∴,∴BC=2.【點睛】本題考查了圓周角定理、相似三角形的判定和性質、勾股定理等知識,證明△DCE∽△DBC是解答本題的關鍵.21、(1)(1)不存在【分析】(1)由題意可得△≥0,即[﹣(1k+1)]1﹣4(k1+1k)≥0,通過解該不等式即可求得k的取值范圍;(1)假設存在實數k使得x1·x1-x11-x11≥0成立.由根與系數的關系可得x1+x1=1k+1,x1·x1=k1+1k,然后利用完全平方公式可以把x1·x1-x11-x11≥0轉化為3x1·x1-(x1+x1)1≥0的形式,通過解不等式可以求得k的值.【詳解】(1)∵原方程有兩個實數根,∴△≥0即[﹣(1k+1)]1﹣4(k1+1k)≥0,∴4k1+4k+1﹣4k1﹣8k≥0,∴1﹣4k≥0,∴k≤,∴當k≤時,原方程有兩個實數根;(1)假設存在實數k使得x1·x1-x11-x11≥0成立,∵x1,x1是原方程的兩根,∴x1+x1=1k+1,x1·x1=k1+1k,由x1·x1-x11-x11≥0,得3x1·x1-(x1+x1)1≥0∴3(k1+1k)﹣(1k+1)1≥0,整理得:﹣(k﹣1)1≥0,∴只有當k=1時,上式才能成立;又∵由(1)知k≤,∴不存在實數k使得x1·x1-x11-x11≥0成立.22、(1)見解析;(2)①見解析,②90°?α【分析】(1)利用網格特點和軸對稱的性質畫出O點;(2)①利用網格特點和旋轉的性質分別畫出A、B、C三點對應點點E、F、G即可;②先確定∠OCB=∠DCB=α,再利用OB=OC和三角形內角和得到∠BOC=180°?2α,根據旋轉的性質得到∠COG=90°,則∠BOG=270°?2α,于是可計算出∠OGB=α?45°,然后計算∠OGC?∠OGB即可.【詳解】(1)如圖,點O為所作;(2)①如圖,△EFG為所作;②∵點O與點D關于BC對稱,∴∠OCB=∠DCB=α,∵OB=OC,∴∠OBC=∠OCB=α,∴∠BOC=180°?2α,∵∠COG=90°,∴∠BOG=180°?2α+90°=270°?2α,∵OB=OG,∴∠OGB=[180°?(270°?2α)]=α?45°,∴∠BGC=∠OGC?∠OGB=45°?(α?45°)=90°?α.故答案為90°?α.【點睛】本題考查了作圖?旋轉變換:根據旋轉的性質可知,對應角都相等都等于旋轉角,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉后的圖形.23、(1)見解析;(2)∠BOC=90°,該圓的半徑為1【分析】(1)作出AC的垂直平分線,交AB于點O,然后以點O為圓心、以OA為半徑作圓即可;(2)根據等腰直角三角形的性質和圓周角定理即可求出∠BOC,根據圓周角定理的推論可得AB是⊙O的直徑,然后根據勾股定理求出AB即得結果.【詳解】解:(1)如圖所示,⊙O即為所求;(2)∵∠ACB=90°,AC=BC=,∴∠A=∠B=45°,,∴∠BOC=2∠A=90°,∵∠ACB=90°,∴AB是⊙O的直徑,∴⊙O的半徑=AB=1.【點睛】本題考查了尺規(guī)作三角形的外接圓、等腰直角三角形的性質、勾股定理、圓周角定理及其推論等知識,屬于基礎題目,熟練掌握上述知識是解題的關鍵.24、,【分析】先將括號內的分式通分并相加,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論