版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆山東省泰安市泰山區(qū)大津口中學九年級數(shù)學第一學期期末學業(yè)水平測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,一邊靠墻(墻有足夠長),其它三邊用12m長的籬笆圍成一個矩形(ABCD)花園,這個花園的最大面積是()A.16m2 B.12m2 C.18m2 D.以上都不對2.如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連結(jié)BD、DP,BD與CF相交于點H,給出下列結(jié)論:①BE=2AE;②△DFP∽△BPH;③DP2=PH?PC;④FE:BC=,其中正確的個數(shù)為()A.1 B.2 C.3 D.43.如圖,太陽在A時測得某樹(垂直于地面)的影長ED=2米,B時又測得該樹的影長CD=8米,若兩次日照的光線PE⊥PC交于點P,則樹的高度為PD為()A.3米 B.4米 C.4.2米 D.4.8米4.如圖,已知⊙O的直徑為4,∠ACB=45°,則AB的長為()A.4 B.2 C.4 D.25.如圖,以點O為位似中心,把△ABC放大為原來的2倍,得到△A′B′C′,以下說法錯誤的是()A. B.△ABC∽△A′B′C′C.∥A′B′ D.點,點,點三點共線6.拋物線y=﹣2x2經(jīng)過平移得到y(tǒng)=﹣2(x+1)2﹣3,平移方法是()A.向左平移1個單位,再向下平移3個單位 B.向左平移1個單位,再向上平移3個單位C.向右平移1個單位,再向下平移3個單位 D.向右平移1個單位,再向上平移3個單位7.如圖,將一副三角板如圖放置,如果,那么點到的距離為()A. B. C. D.8.把拋物線y=﹣x2向右平移1個單位,再向下平移2個單位,所得拋物線是()A.y=(x﹣1)+2 B.y=﹣(x﹣1)+2C.y=﹣(x+1)+2 D.y=﹣(x﹣1)﹣29.如圖,正比例函數(shù)的圖像與反比例函數(shù)的圖象相交于A、B兩點,其中點A的橫坐標為2,當時,x的取值范圍是()A.x<-2或x>2 B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>210.在△ABC中,若三邊BC,CA,AB滿足BC:CA:AB=3:4:5,則cosA的值為()A. B. C. D.11.已知點P(a,b)是平面直角坐標系中第四象限的點,則化簡+|b-a|的結(jié)果是()A. B.a(chǎn) C. D.12.在同一直角坐標系中,函數(shù)與y=ax+1(a≠0)的圖象可能是()A. B.C. D.二、填空題(每題4分,共24分)13.己知圓錐的母線長為,底面半徑為,則它的側(cè)面積為__________(結(jié)果保留).14.在一個不透明的袋子中裝有3個白球和若干個紅球,這些球除顏色外都相同.每次從袋子中隨機摸出一個球,記下顏色后再放回袋中,通過多次重復試驗發(fā)現(xiàn)摸出紅球的頻率穩(wěn)定在0.7附近,則袋子中紅球約有___個.15.一個不透明的布袋中裝有3個白球和5個紅球,它們除了顏色不同外,其余均相同,從中隨機摸出一個球,摸到紅球的概率是______.16.如圖,將矩形ABCD繞點A旋轉(zhuǎn)至矩形AB′C′D′位置,此時AC′的中點恰好與D點重合,AB′交CD于點E.若AB=6,則△AEC的面積為_____.17.如果方程x2-4x+3=0的兩個根分別是Rt△ABC的兩條邊,△ABC最小的角為A,那么tanA的值為_______.18.反比例函數(shù)與在第一象限內(nèi)的圖象如圖所示,軸于點,與兩個函數(shù)的圖象分別相交于兩點,連接,則的面積為_________.三、解答題(共78分)19.(8分)在△ABC中,∠ACB=90°,AB=20,BC=1.(1)如圖1,折疊△ABC使點A落在AC邊上的點D處,折痕交AC、AB分別于Q、H,若則HQ=.(2)如圖2,折疊使點A落在BC邊上的點M處,折痕交AC、AB分別于E、F.若FM∥AC,求證:四邊形AEMF是菱形;(3)在(1)(2)的條件下,線段CQ上是否存在點P,使得和相似?若存在,求出PQ的長;若不存在,請說明理由.20.(8分)如圖,D是等邊三角形ABC內(nèi)一點,將線段AD繞點A順時針旋轉(zhuǎn)60°,得到線段AE,連接CD,BE.(1)求證:EB=DC;(2)連接DE,若∠BED=50°,求∠ADC的度數(shù).21.(8分)如圖1:在Rt△ABC中,AB=AC,D為BC邊上一點(不與點B,C重合),試探索AD,BD,CD之間滿足的等量關(guān)系,并證明你的結(jié)論.小明同學的思路是這樣的:將線段AD繞點A逆時針旋轉(zhuǎn)90°,得到線段AE,連接EC,DE.繼續(xù)推理就可以使問題得到解決.(1)請根據(jù)小明的思路,試探索線段AD,BD,CD之間滿足的等量關(guān)系,并證明你的結(jié)論;(2)如圖2,在Rt△ABC中,AB=AC,D為△ABC外的一點,且∠ADC=45°,線段AD,BD,CD之間滿足的等量關(guān)系又是如何的,請證明你的結(jié)論;(3)如圖3,已知AB是⊙O的直徑,點C,D是⊙O上的點,且∠ADC=45°.①若AD=6,BD=8,求弦CD的長為;②若AD+BD=14,求的最大值,并求出此時⊙O的半徑.22.(10分)如圖,某中學有一塊長為米,寬為米的矩形場地,計劃在該場地上修筑寬都為2米的兩條互相垂直的道路(陰影部分),余下的四塊矩形小場地建成草坪.(1)請分別寫出每條道路的面積(用含或的代數(shù)式表示);(2)若,并且四塊草坪的面積之和為144平方米,試求原來矩形場地的長與寬各為多少米?23.(10分)如圖,P是正方形ABCD的邊CD上一點,∠BAP的平分線交BC于點Q,求證:AP=DP+BQ.24.(10分)如圖,AC為圓O的直徑,弦AD的延長線與過點C的切線交于點B,E為BC中點,AC=,BC=4.(1)求證:DE為圓O的切線;(2)求陰影部分面積.25.(12分)閱讀下面材料,完成(1),(2)兩題數(shù)學課上,老師出示了這樣一道題:如圖1,在中,,,點為上一點,且滿足,為上一點,,延長交于,求的值.同學們經(jīng)過思考后,交流了自己的想法:小明:“通過觀察和度量,發(fā)現(xiàn)與相等.”小偉:“通過構(gòu)造全等三角形,經(jīng)過進一步推理,就可以求出的值.”……老師:“把原題條件中的‘’,改為‘’其他條件不變(如圖2),也可以求出的值.(1)在圖1中,①求證:;②求出的值;(2)如圖2,若,直接寫出的值(用含的代數(shù)式表示).26.已知二次函數(shù)y=ax2﹣2ax+k(a、k為常數(shù),a≠0),線段AB的兩個端點坐標分別為A(﹣1,2),B(2,2).(1)該二次函數(shù)的圖象的對稱軸是直線;(2)當a=﹣1時,若點B(2,2)恰好在此函數(shù)圖象上,求此二次函數(shù)的關(guān)系式;(3)當a=﹣1時,當此二次函數(shù)的圖象與線段AB只有一個公共點時,求k的取值范圍;(4)若k=a+3,過點A作x軸的垂線交x軸于點P,過點B作x軸的垂線交x軸于點Q,當﹣1<x<2,此二次函數(shù)圖象與四邊形APQB的邊交點個數(shù)是大于0的偶數(shù)時,直接寫出k的取值范圍.
參考答案一、選擇題(每題4分,共48分)1、C【分析】設(shè)AB邊為x,則BC邊為(12-2x),根據(jù)矩形的面積可列二次函數(shù),再求出最大值即可.【詳解】設(shè)AB邊為x,則BC邊為(12-2x),則矩形ABCD的面積y=x(12-2x)=-2(x-3)2+18,∴當x=3時,面積最大為18,選C.【點睛】此題主要考察二次函數(shù)的應(yīng)用,正確列出函數(shù)是解題的關(guān)鍵.2、D【分析】由正方形的性質(zhì)和相似三角形的判定與性質(zhì),即可得出結(jié)論.【詳解】解:∵△BPC是等邊三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正確;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正確;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH?PC,故③正確;∵∠ABE=30°,∠A=90°∴AE=AB=BC,∵∠DCF=30°,∴DF=DC=BC,∴EF=AE+DF=﹣BC,∴FE:BC=(2﹣3):3故④正確,故選:D.【點睛】本題考查相似三角形的判定和性質(zhì),正方形的性質(zhì),等邊三角形的性質(zhì),解答此題的關(guān)鍵是熟練掌握性質(zhì)和定理.3、B【分析】根據(jù)題意求出△PDE和△FDP相似,根據(jù)相似三角形對應(yīng)邊成比例可得=,然后代入數(shù)據(jù)進行計算即可得解.【詳解】∵PE⊥PC,∴∠E+∠C=90°,∠E+∠EPD=90°,∴∠EPD=∠C,又∵∠PDE=∠FDP=90°,∴△PDE∽△FDP,∴=,由題意得,DE=2,DC=8,∴=,解得PD=4,即這顆樹的高度為4米.故選:B.【點睛】本題通過投影的知識結(jié)合三角形的相似,求解高的大小;是平行投影性質(zhì)在實際生活中的應(yīng)用.4、D【分析】連接OA、OB,根據(jù)同弧所對的圓周角是圓心角的一半,即可求出∠AOB=90°,再根據(jù)等腰直角三角形的性質(zhì)即可求出AB的長.【詳解】連接OA、OB,如圖,∵∠AOB=2∠ACB=2×45°=90°,∴△AOB為等腰直角三角形,∴AB=OA=2.故選:D.【點睛】此題考查的是圓周角定理和等腰直角三角形的性質(zhì),掌握同弧所對的圓周角是圓心角的一半是解決此題的關(guān)鍵.5、A【分析】直接利用位似圖形的性質(zhì)進而分別分析得出答案.【詳解】解:∵以點O為位似中心,把△ABC放大為原圖形的2倍得到△A′B′C′,
∴△ABC∽△A′B′C′,點C、點O、點C′三點在同一直線上,AB∥A′B′,OB′:BO=2:1,故選項A錯誤,符合題意.
故選:A.【點睛】此題主要考查了位似變換,正確掌握位似圖形的性質(zhì)是解題關(guān)鍵.6、A【分析】由拋物線y=?2x2得到頂點坐標為(0,0),而平移后拋物線y=?2(x+1)2?3的頂點坐標為(?1,?3),根據(jù)頂點坐標的變化尋找平移方法.【詳解】根據(jù)拋物線y=?2x2得到頂點坐標為(0,0),而平移后拋物線y=?2(x+1)2?3的頂點坐標為(?1,?3),∴平移方法為:向左平移1個單位,再向下平移3個單位.故選:A.【點睛】本題主要考查了拋物線的平移,熟練掌握相關(guān)概念是解題關(guān)鍵.7、B【分析】作EF⊥BC于F,設(shè)EF=x,根據(jù)三角函數(shù)分別表示出BF,CF,根據(jù)BD∥EF得到△BCD∽△FCE,得到,代入即可求出x.【詳解】如圖,作EF⊥BC于F,設(shè)EF=x,又∠ABC=45°,∠DCB=30°,則BF=EF÷tan45°=x,FC=EF÷tan30°=x∵BD∥EF∴△BCD∽△FCE,∴,即解得x=,x=0舍去故EF=,選B.【點睛】此題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟知相似三角形的判定及解直角三角形的應(yīng)用.8、D【分析】根據(jù)二次函數(shù)圖象左加右減,上加下減的平移規(guī)律進行求解.【詳解】拋物線y=﹣x1向右平移1個單位,得:y=﹣(x﹣1)1;再向下平移1個單位,得:y=﹣(x﹣1)1﹣1.故選:D.【點睛】此題主要考查了二次函數(shù)與幾何變換,正確記憶平移規(guī)律是解題關(guān)鍵.9、D【分析】先根據(jù)反比例函數(shù)與正比例函數(shù)的性質(zhì)求出B點坐標,再由函數(shù)圖象即可得出結(jié)論.【詳解】解:∵反比例函數(shù)與正比例函數(shù)的圖象均關(guān)于原點對稱,
∴A、B兩點關(guān)于原點對稱,
∵點A的橫坐標為1,∴點B的橫坐標為-1,
∵由函數(shù)圖象可知,當-1<x<0或x>1時函數(shù)y1=k1x的圖象在的上方,
∴當y1>y1時,x的取值范圍是-1<x<0或x>1.
故選:D.【點睛】本題考查的是反比例函數(shù)與一次函數(shù)的交點問題,能根據(jù)數(shù)形結(jié)合求出y1>y1時x的取值范圍是解答此題的關(guān)鍵.10、D【分析】根據(jù)已知條件,運用勾股定理的逆定理可得該三角形為直角三角形,再根據(jù)余弦的定義解答即可.【詳解】解:設(shè)分別為,,為直角三角形,.【點睛】本題主要考查了勾股定理的逆定理和余弦,熟練掌握對應(yīng)知識點是解答關(guān)鍵.11、A【解析】根據(jù)第四象限的點的橫坐標是正數(shù),縱坐標是負數(shù),求解即可.【詳解】∵點P(a,b)是平面直角坐標系中第四象限的點,∴a>0,b<0,∴b?a<0,∴+|b-a|=?b?(b?a)=?b?b+a=?2b+a=a?2b,故選A.【點睛】本題考查點的坐標,二次根式的性質(zhì)與化簡,解題的關(guān)鍵是根據(jù)象限特征判斷正負.12、B【分析】本題可先由反比例函數(shù)圖象得到字母a的正負,再與一次函數(shù)y=ax+1的圖象相比較看是否一致即可解決問題.【詳解】解:A、由函數(shù)的圖象可知a>0,由y=ax+1(a≠0)的圖象可知a<0故選項A錯誤.B、由函數(shù)的圖象可知a>0,由y=ax+1(a≠0)的圖象可知a>0,且交于y軸于正半軸,故選項B正確.C、y=ax+1(a≠0)的圖象應(yīng)該交于y軸于正半軸,故選項C錯誤.D、由函數(shù)的圖象可知a<0,由y=ax+1(a≠0)的圖象可知a>0,故選項D錯誤.故選:B.【點睛】本題考查反比例函數(shù)的圖象、一次函數(shù)的圖象等知識,解題的關(guān)鍵是靈活應(yīng)用這些知識解決問題,屬于中考常考題型.二、填空題(每題4分,共24分)13、【分析】求出圓錐的底面圓周長,利用公式即可求出圓錐的側(cè)面積.【詳解】解:圓錐的底面圓周長為,則圓錐的側(cè)面積為.故答案為.【點睛】本題考查了圓錐的計算,能將圓錐側(cè)面展開是解題的關(guān)鍵,并熟悉相應(yīng)的計算公式.14、1.【分析】根據(jù)口袋中有3個白球和若干個紅球,利用紅球在總數(shù)中所占比例得出與實驗比例應(yīng)該相等求出即可.【詳解】設(shè)袋中紅球有x個,根據(jù)題意,得:,解得:x=1,經(jīng)檢驗:x=1是分式方程的解,所以袋中紅球有1個,故答案為1.【點睛】此題考查利用頻率估計概率,解題關(guān)鍵在于利用紅球在總數(shù)中所占比例進行求解.15、【分析】根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】根據(jù)題意可得:一個不透明的袋中裝有除顏色外其余均相同的3個白球和5個紅球,共5個,從中隨機摸出一個,則摸到紅球的概率是故答案為:.【點睛】本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.16、4【分析】根據(jù)旋轉(zhuǎn)后AC的中點恰好與D點重合,利用旋轉(zhuǎn)的性質(zhì)得到直角三角形ACD中,∠ACD=30°,再由旋轉(zhuǎn)后矩形與已知矩形全等及矩形的性質(zhì)得到∠DAE為30°,進而得到∠EAC=∠ECA,利用等角對等邊得到AE=CE,設(shè)AE=CE=x,表示出AD與DE,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出EC的長,即可求出三角形AEC面積.【詳解】解:∵旋轉(zhuǎn)后AC的中點恰好與D點重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE.在Rt△ADE中,設(shè)AE=EC=x,則有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根據(jù)勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,則S△AEC=EC?AD=4.故答案為4.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),含30度直角三角形的性質(zhì),勾股定理以及等腰三角形的性質(zhì)的運用,熟練掌握性質(zhì)及定理是解答本題的關(guān)鍵.17、或【解析】解方程x2-4x+3=0得,x1=1,x2=3,①當3是直角邊時,∵△ABC最小的角為A,∴tanA=;②當3是斜邊時,根據(jù)勾股定理,∠A的鄰邊=,∴tanA=;所以tanA的值為或.18、【分析】設(shè)直線AB與x軸交于點C,那么.根據(jù)反比例函數(shù)的比例系數(shù)k的幾何意義,即可求出結(jié)果.【詳解】設(shè)直線AB與x軸交于點C.
∵AC⊥x軸,BC⊥x軸.
∵點A在雙曲線的圖象上,
∴,∵點B在雙曲線的圖象上,∴,∴.
故答案為:1.【點睛】本題主要考查反比例函數(shù)的比例系數(shù)的幾何意義.反比例函數(shù)圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關(guān)系,即.三、解答題(共78分)19、(1)2;(2)見解析;(3)存在,QP的值為或8或.【分析】(1)利用勾股定理求出AC,設(shè)HQ=x,根據(jù)構(gòu)建方程即可解決問題;(2)利用對折與平行線的性質(zhì)證明四邊相等即可解決問題;(3)設(shè)AE=EM=FM=AF=2m,則BM=3m,F(xiàn)B=5m,構(gòu)建方程求出m的值,分兩種情形分別求解即可解決問題.【詳解】解:(1)如圖1中,在△ABC中,∵∠ACB=90°,AB=20,BC=1,∴AC==16,設(shè)HQ=x,∵HQ∥BC,∴=,∴,∴AQ=x,由對折得:∵∴×16×1=9××x×x,∴x=2或﹣2(舍棄),∴HQ=2,故答案為2.(2)如圖2中,由翻折不變性可知:AE=EM,AF=FM,∠AFE=∠MFE,∵FM∥AC,∴∠AEF=∠MFE,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=MF=ME,∴四邊形AEMF是菱形.(3)如圖3中,設(shè)AE=EM=FM=AF=2m,則BM=3m,F(xiàn)B=5m,∴2m+5m=20,∴m=,∴AE=EM=,∴EC=AC﹣AE=16﹣=,∴CM=∵QH=2,AQ=,∴QC=,設(shè)PQ=x,當=時,,∴解得:,當=時,,∴解得:x=8或,經(jīng)檢驗:x=8或是分式方程的解,且符合題意,綜上所述,滿足條件長QP的值為或8或.【點睛】本題考查的是三角形相似的判定與性質(zhì),菱形的判定與性質(zhì),軸對稱的性質(zhì),銳角三角函數(shù)的應(yīng)用,掌握以上知識是解題的關(guān)鍵.20、(1)證明見解析;(2)110°【分析】(1)根據(jù)等邊三角形的性質(zhì)可得∠BAC=60°,AB=AC,由旋轉(zhuǎn)的性質(zhì)可得∠DAE=60°,AE=AD,利用SAS即可證出≌,從而證出結(jié)論;(2)根據(jù)等邊三角形的判定定理可得為等邊三角形,從而得出∠AED=60°,由(1)中全等可得∠AEB=∠ADC,求出∠AEB即可求出結(jié)論.【詳解】解:(1)∵是等邊三角形,∴∠BAC=60°,AB=AC.∵線段AD繞點A順時針旋轉(zhuǎn)60°,得到線段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在和中,∵,∴≌.∴EB=DC.(2)如圖,由(1)得∠DAE=60°,AE=AD,∴為等邊三角形.∴∠AED=60°,由(1)得≌,∴∠AEB=∠ADC.∵∠BED=50°,∴∠AEB=∠AED+∠BED=110°,∴∠ADC=110°.【點睛】此題考查的是等邊三角形的判定及性質(zhì)、全等三角形的判定及性質(zhì)和旋轉(zhuǎn)的性質(zhì),掌握等邊三角形的判定及性質(zhì)、全等三角形的判定及性質(zhì)和旋轉(zhuǎn)的性質(zhì)是解決此題的關(guān)鍵.21、(1)CD2+BD2=2AD2,見解析;(2)BD2=CD2+2AD2,見解析;(3)①7,②最大值為,半徑為【分析】(1)先判斷出∠BAD=CAE,進而得出△ABD≌△ACE,得出BD=CE,∠B=∠ACE,再根據(jù)勾股定理得出DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,即可得出結(jié)論;(2)同(1)的方法得,ABD≌△ACE(SAS),得出BD=CE,再用勾股定理的出DE2=2AD2,CE2=CD2+DE2=CD2+2AD2,即可得出結(jié)論;(3)先根據(jù)勾股定理的出DE2=CD2+CE2=2CD2,再判斷出△ACE≌△BCD(SAS),得出AE=BD,①將AD=6,BD=8代入DE2=2CD2中,即可得出結(jié)論;②先求出CD=7,再將AD+BD=14,CD=7代入,化簡得出﹣(AD﹣)2+,進而求出AD,最后用勾股定理求出AB即可得出結(jié)論.【詳解】解:(1)CD2+BD2=2AD2,理由:由旋轉(zhuǎn)知,AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,∵AB=AC,∴△ABD≌△ACE(SAS),∴BD=CE,∠B=∠ACE,在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∴∠ACE=45°,∴∠DCE=∠ACB+∠ACE=90°,根據(jù)勾股定理得,DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,∴CD2+BD2=2AD2;(2)BD2=CD2+2AD2,理由:如圖2,將線段AD繞點A逆時針旋轉(zhuǎn)90°,得到線段AE,連接EC,DE,同(1)的方法得,ABD≌△ACE(SAS),∴BD=CE,在Rt△ADE中,AD=AE,∴∠ADE=45°,∴DE2=2AD2,∵∠ADC=45°,∴∠CDE=∠ADC+∠ADE=90°,根據(jù)勾股定理得,CE2=CD2+DE2=CD2+2AD2,即:BD2=CD2+2AD2;(3)如圖3,過點C作CE⊥CD交DA的延長線于E,∴∠DCE=90°,∵∠ADC=45°,∴∠E=90°﹣∠ADC=45°=∠ADC,∴CD=CE,根據(jù)勾股定理得,DE2=CD2+CE2=2CD2,連接AC,BC,∵AB是⊙O的直徑,∴∠ACB=∠ADB=90°,∵∠ADC=45°,∴∠BDC=45°=∠ADC,∴AC=BC,∵∠DCE=∠ACB=90°,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,①AD=6,BD=8,∴DE=AD+AE=AD+BD=14,∴2CD2=142,∴CD=7,故答案為7;②∵AD+BD=14,∴CD=7,∴=AD?(BD+×7)=AD?(BD+7)=AD?BD+7AD=AD(14﹣AD)+7AD=﹣AD2+21AD=﹣(AD﹣)2+,∴當AD=時,的最大值為,∵AD+BD=14,∴BD=14﹣=,在Rt△ABD中,根據(jù)勾股定理得,AB=,∴⊙O的半徑為OA=AB=.【點睛】本題考查圓與三角形的結(jié)合,關(guān)鍵在于熟記圓的性質(zhì)和三角形的性質(zhì).22、(1)這兩條道路的面積分別是平方米和平方米;(2)原來矩形的長為20米,寬為10米.【分析】(1)由題意矩形場地的長為米,寬為米以及道路寬為2米即可得出每條道路的面積;(2)根據(jù)題意四塊草坪的面積之和為144平方米這一等量關(guān)系建立方程進行分析計算即可.【詳解】解:(1)由題意可知這兩條道路的面積分別是平方米和平方米.(2),∴,根據(jù)題意得:解得:,(舍去),∴(米)答:原來矩形的長為20米,寬為10米.【點睛】本題考查一元二次方程的實際應(yīng)用,理解題意并根據(jù)題意列方程求解是解題的關(guān)鍵.23、證明見解析.【解析】試題分析:根據(jù)旋轉(zhuǎn)的性質(zhì)得出∠E=∠AQB,∠EAD=∠QAB,進而得出∠PAE=∠E,即可得出AP=PE=DP+DE=DP+BQ.試題解析:證明:將△ABQ繞A逆時針旋轉(zhuǎn)90°得到△ADE,由旋轉(zhuǎn)的性質(zhì)可得出∠E=∠AQB,∠EAD=∠QAB,又∵∠PAE=90°﹣∠PAQ=90°﹣∠BAQ=∠DAQ=∠AQB=∠E,在△PAE中,得AP=PE=DP+DE=DP+BQ.點睛:此題主要考查了旋轉(zhuǎn)的性質(zhì),根據(jù)已知得出PE=DP+DE是解題關(guān)鍵.24、(1)證明見解析;(2)S陰影=4-2π【分析】(1)根據(jù)斜邊中線等于斜邊一半得到DE=CE,再利用切線的性質(zhì)得到∠BCO=90°,最后利用等量代換即可證明,(2)根據(jù)S陰影=2S△ECO-S扇形COD即可求解.【詳解】(1)連接DC、DO.因為AC為圓O直徑,所以∠ADC=90°,則∠BDC=90°,因為E為Rt△BDC斜邊BC中點,所以DE=CE=BE=BC,所以∠DCE=∠EDC,因為OD=OC,所以∠DCO=∠CDO.因為BC為圓O切線,所以BC⊥AC,即∠BCO=90°,所以∠ODE=∠ODC+∠EDC=∠OCD+∠DCE=∠BCO=90°,所以ED⊥OD,所以DE為圓O的切線.(2)S陰影=2S△ECO-S扇形COD=4-2π【點睛】本題主要考查切線的性質(zhì)和判定及扇形面積的計算,掌握切線的判定定理及扇形的面積公式是解題的關(guān)鍵.25、(1)①證明見解析;②;(2)【分析】(1)①根據(jù)三角形內(nèi)角和定理可得,然后根據(jù)三角形外角的性質(zhì)可得,從而證出結(jié)論;②過點作交的延長線于點,過點作于點,過點作交于點,利用ASA證出,可得,再利用AAS證出,可得,利用平行線分線段成比例定理即可證出結(jié)論;(2)根據(jù)三角形內(nèi)角和定理可得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版牧業(yè)養(yǎng)殖技術(shù)引進與推廣合同3篇
- 二零二五年鋼結(jié)構(gòu)工程居間驗收服務(wù)合同3篇
- 2025年校園熱泵熱水設(shè)備供應(yīng)合同樣本2篇
- 2025版學校圖書采購與配送服務(wù)承包合同3篇
- 2025版宣傳片制作與宣傳合同3篇
- 2025版塔吊租賃、安裝與安全維護服務(wù)合同3篇
- 全新二零二五年度廣告制作與發(fā)布合同6篇
- 家用紡織品智能溫控技術(shù)考核試卷
- 個人職業(yè)規(guī)劃社群考核試卷
- 2025版學校校園安全防范系統(tǒng)建設(shè)承包合同3篇
- 2024年山東省泰安市高考物理一模試卷(含詳細答案解析)
- 腫瘤患者管理
- 2025春夏運動戶外行業(yè)趨勢白皮書
- 《法制宣傳之盜竊罪》課件
- 通信工程單位勞動合同
- 2024年醫(yī)療器械經(jīng)營質(zhì)量管理規(guī)范培訓課件
- 2024年計算機二級WPS考試題庫380題(含答案)
- 高低壓配電柜產(chǎn)品營銷計劃書
- 2024年4月自考02202傳感器與檢測技術(shù)試題
- 新入職員工培訓考試附有答案
- 外觀質(zhì)量評定報告
評論
0/150
提交評論