版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省襄陽市東風中學2024屆數(shù)學高二第二學期期末考試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知三棱錐S-ABC中,底面ABC為邊長等于2的等邊三角形,SA垂直于底面ABC,SA=3,那么直線AB與平面SBC所成角的正弦值為A.34B.C.74D.2.某群體中的每位成員使用移動支付的概率都為,各成員的支付方式相互獨立,設(shè)為該群體的10位成員中使用移動支付的人數(shù),,,則A.0.7 B.0.6 C.0.4 D.0.33.設(shè)奇函數(shù)的最小正周期為,則()A.在上單調(diào)遞減 B.在上單調(diào)遞減C.在上單調(diào)遞增 D.在上單調(diào)遞增4.已知曲線,給出下列命題:①曲線關(guān)于軸對稱;②曲線關(guān)于軸對稱;③曲線關(guān)于原點對稱;④曲線關(guān)于直線對稱;⑤曲線關(guān)于直線對稱,其中正確命題的個數(shù)是()A.1 B.2 C.3 D.45.設(shè)X~N(1,σ2),其正態(tài)分布密度曲線如圖所示,且P(X≥3)=0.0228,那么向正方形OABC中隨機投擲10000個點,則落入陰影部分的點的個數(shù)的估計值為()(附:隨機變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%)A.6038 B.6587 C.7028 D.75396.三棱錐P-ABC中,PA⊥平面ABC,Q是BC邊上的一個動點,且直線PQ與面ABC所成角的最大值為則該三棱錐外接球的表面積為()A. B. C. D.7.已知冪函數(shù)的圖象關(guān)于y軸對稱,且在上是減函數(shù),則()A.- B.1或2 C.1 D.28.若,則的值是()A.-2B.-3C.125D.-1319.函數(shù)有()A.最大值為1 B.最小值為1C.最大值為 D.最小值為10.已知球是棱長為1的正方體的外接球,則平面截球所得的截面面積為()A. B. C. D.11.若對于任意實數(shù),函數(shù)恒大于零,則實數(shù)的取值范圍是()A. B. C. D.12.如下圖,在同一直角坐標系中表示直線y=ax與y=x+a,正確的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.棱長為1的正方體的8個頂點都在球面O的表面上,E、F分別是棱、的中點,則直線EF被球O截得的線段長為________14.在極坐標系中,若過點(3,0)且與極軸垂直的直線交曲線于A、B兩點,則="______________________."15.某課題組進行城市空氣質(zhì)量調(diào)查,按地域把24個城市分成甲、乙、丙三組,對應的城市數(shù)分別為4,12,8,若用分層抽樣抽取6個城市,則丙組中應抽取的城市數(shù)為_______.16.向量,,在正方形網(wǎng)格(每個小正方形的邊長為1)中的位置如圖所示,若向量與共線,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面為平行四邊形,底面,是棱的中點,且.(1)求證:平面;(2)如果是棱上一點,且直線與平面所成角的正弦值為,求的值.18.(12分)如圖(1)是一個仿古的首飾盒,其左視圖是由一個半徑為分米的半圓和矩形組成,其中長為分米,如圖(2).為了美觀,要求.已知該首飾盒的長為分米,容積為4立方分米(不計厚度),假設(shè)該首飾盒的制作費用只與其表面積有關(guān),下半部分的制作費用為每平方分米2百元,上半部制作費用為每平方分米4百元,設(shè)該首飾盒的制作費用為百元.(1)寫出關(guān)于的函數(shù)解析式;(2)當為何值時,該首飾盒的制作費用最低?19.(12分)已知圓圓心為,定點,動點在圓上,線段的垂直平分線交線段于點.求動點的軌跡的方程;若點是曲線上一點,且,求的面積.20.(12分)證明下列不等式:(1)用分析法證明:;(2)已知是正實數(shù),且.求證:.21.(12分)已知是定義在上的奇函數(shù),且當時,.(Ⅰ)求的解析式;(Ⅱ)解不等式.22.(10分)如圖,在四棱錐中,平面,底面是正形,,為的中點.(1)求證:平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】略視頻2、B【解題分析】分析:判斷出為二項分布,利用公式進行計算即可.或,,可知故答案選B.點睛:本題主要考查二項分布相關(guān)知識,屬于中檔題.3、B【解題分析】分析:利用輔助角公式將函數(shù)進行化簡,根號函數(shù)的周期和奇偶性即可得到結(jié)論.詳解:,
∵函數(shù)的周期是,,
∵)是奇函數(shù),
即∴當時,即則在單調(diào)遞減,
故選:B.點睛:本題主要考查三角函數(shù)的解析式的求解以及三角函數(shù)的圖象和性質(zhì),利用輔助角公式是解決本題的關(guān)鍵.4、C【解題分析】
根據(jù)定義或取特殊值對曲線的對稱性進行驗證,可得出題中正確命題的個數(shù).【題目詳解】在曲線上任取一點,該點關(guān)于軸的對稱點的坐標為,且,則曲線關(guān)于軸對稱,命題①正確;點關(guān)于軸的對稱點的坐標為,且,則曲線關(guān)于軸對稱,命題②正確;點關(guān)于原點的對稱點的坐標為,且,則曲線關(guān)于原點對稱,命題③正確;在曲線上取點,該點關(guān)于直線的對稱點坐標為,由于,則曲線不關(guān)于直線對稱,命題④錯誤;在曲線上取點,該點關(guān)于直線的對稱點的坐標為,由于,則曲線不關(guān)于直線對稱,命題⑤錯誤.綜上所述,正確命題的個數(shù)為.故選:C.【題目點撥】本題考查曲線對稱性的判定,一般利用對稱性的定義以及特殊值法進行判斷,考查推理能力,屬于中等題.5、B【解題分析】分析:求出,即可得出結(jié)論.詳解:由題意得,P(X≤-1)=P(X≥3)=0.0228,∴P(-1<X<3)=1-0.0228×2=0.9544,∴1-2σ=-1,σ=1,∴P(0≤X≤1)=P(0≤X≤2)=0.3413,故估計的個數(shù)為10000×(1-0.3413)=6587,故選:B.點睛:本題考查正態(tài)分布曲線的特點及曲線所表示的意義,考查正態(tài)分布中兩個量和的應用,考查曲線的對稱性.6、C【解題分析】
根據(jù)題意畫出圖形,結(jié)合圖形找出△ABC的外接圓圓心與三棱錐P﹣ABC外接球的球心,求出外接球的半徑,再計算它的表面積.【題目詳解】三棱錐P﹣ABC中,PA⊥平面ABC,直線PQ與平面ABC所成角為θ,如圖所示;則sinθ==,且sinθ的最大值是,∴(PQ)min=2,∴AQ的最小值是,即A到BC的距離為,∴AQ⊥BC,∵AB=2,在Rt△ABQ中可得,即可得BC=6;取△ABC的外接圓圓心為O′,作OO′∥PA,∴=2r,解得r=2;∴O′A=2,取H為PA的中點,∴OH=O′A=2,PH=,由勾股定理得OP=R==,∴三棱錐P﹣ABC的外接球的表面積是S=4πR2=4×=57π.故答案為C【題目點撥】本題主要考查正弦定理和線面位置關(guān)系,考查了幾何體外接球的應用問題,意在考查學生對這些知識的掌握水平和分析推理能力.解題的關(guān)鍵求外接球的半徑.7、C【解題分析】分析:由為偶數(shù),且,即可得結(jié)果.詳解:冪函數(shù)的圖象關(guān)于軸對稱,且在上是減函數(shù),為偶數(shù),且,解得,故選C.點睛:本題考查冪函數(shù)的定義、冪函數(shù)性質(zhì)及其應用,意在考查綜合利用所學知識解決問題的能力.8、C【解題分析】試題分析:由題意可知,令得,令得所以考點:二項式系數(shù)9、A【解題分析】
對函數(shù)進行求導,判斷出函數(shù)的單調(diào)性,進而判斷出函數(shù)的最值情況.【題目詳解】解:,當時,,當時,,在上單調(diào)遞增,在上單調(diào)遞減,有最大值為,故選A.【題目點撥】本題考查了利用導數(shù)研究函數(shù)最值問題,對函數(shù)的導函數(shù)的正負性的判斷是解題的關(guān)鍵.10、D【解題分析】
根據(jù)正方體的特征,求出球的直徑和球心O到平面的距離,求出截面圓的半徑,即可得到面積.【題目詳解】球是棱長為1的正方體的外接球,其體對角線就是球的直徑,所以球的半徑為,根據(jù)正方體的性質(zhì)O到平面的距離為,所以平面截球所得的截面圓的半徑為,所以其面積為.故選:D【題目點撥】此題考查求幾何體外接球問題,根據(jù)幾何特征求出外接球的半徑,根據(jù)圓心到截面的距離求截面圓的半徑,進而求解面積.11、D【解題分析】
求出函數(shù)的導數(shù),根據(jù)導數(shù)的符號求出函數(shù)的單調(diào)區(qū)間,求出最值,即可得到實數(shù)的取值范圍【題目詳解】當時,恒成立若,為任意實數(shù),恒成立若時,恒成立即當時,恒成立,設(shè),則當時,,則在上單調(diào)遞增當時,,則在上單調(diào)遞減當時,取得最大值為則要使時,恒成立,的取值范圍是故選【題目點撥】本題以函數(shù)為載體,考查恒成立問題,解題的關(guān)鍵是分離含參量,運用導數(shù)求得新函數(shù)的最值,繼而求出結(jié)果,當然本題也可以不分離參量來求解,依然運用導數(shù)來分類討論最值情況。12、A【解題分析】
由題意逐一考查所給的函數(shù)圖像是否符合題意即可.【題目詳解】逐一考查所給的函數(shù)圖像:對于選項A,過坐標原點,則,直線在軸的截距應該小于零,題中圖像符合題意;對于選項C,過坐標原點,則,直線在軸的截距應該大于零,題中圖像不合題意;過坐標原點,直線的傾斜角為銳角,題中BD選項中圖像不合題意;本題選擇A選項.【題目點撥】本題主要考查分類討論的數(shù)學思想,一次函數(shù)的性質(zhì)等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、.【解題分析】分析:詳解:正方體的外接球球心為O,半徑為,假設(shè)2和線段EF相較于HG兩點,連接OG,取GH的中點為D連接OD,則ODG為直角三角形,OD=,根據(jù)勾股定理得到故GH=.故答案為.點睛:涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.14、【解題分析】
解:過點(3,0)且與極軸垂直的直線方程為x=3,曲線ρ=1cosθ即ρ2=1ρcosθ,即x2+y2=1x,(x-2)2+y2=1.把x=3代入(x-2)2+y2=1可得y=±,故|AB|=215、2【解題分析】
根據(jù)抽取6個城市作為樣本,得到每個個體被抽到的概率,用概率乘以丙組的數(shù)目,即可得到結(jié)果.【題目詳解】城市有甲、乙、丙三組,對應的城市數(shù)分別為4,12,8.
本市共有城市數(shù)24,用分層抽樣的方法從中抽取一個容量為6的樣本,
每個個體被抽到的概率是,丙組中對應的城市數(shù)8,則丙組中應抽取的城市數(shù)為,故答案為2.【題目點撥】本題主要考查分層抽樣的應用以及古典概型概率公式的應用,屬于基礎(chǔ)題.分層抽樣適合總體中個體差異明顯,層次清晰的抽樣,其主要性質(zhì)是,每個層次,抽取的比例相同.16、【解題分析】
建立平面直角坐標系,從而得到的坐標,這樣即可得出的坐標,根據(jù)與共線,可求出,從而求出的坐標,即得解.【題目詳解】建立如圖所示平面直角坐標系,則:;與共線故答案為:【題目點撥】本題考查了平面向量線性運算和共線的坐標表示,考查了學生概念理解,數(shù)形結(jié)合,數(shù)學運算的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解題分析】試題分析:(1)由所以.又因為底面平面;(2)如圖以為原點建立空間直角坐標系,求得平面的法向量和.試題解析:(1)連結(jié),因為在中,,所以,所以.因為,所以.又因為底面,所以,因為,所以平面(2)如圖以為原點,所在直線分別為軸建立空間直角坐標系,則.因為是棱的中點,所以.所以,設(shè)為平面的法向量,所以,即,令,則,所以平面的法向量因為是在棱上一點,所以設(shè).設(shè)直線與平面所成角為,因為平面的法向量,所以.解得,即,所以考點:1、線面垂直;2、線面角.18、(1);(2)當分米時,該首飾盒制作費用最低.【解題分析】分析:該幾何體下面是一個長方體,上面是半個圓柱,由體積求得,然后分別求出上半部分和下半部分的面積,從而可得關(guān)于的解析式,注意要由可求得的取值范圍.(2)利用導數(shù)可求得的最小值.詳解:(1)由題知,∴.又因,得,∴.(2)令,∴,令則,∵,當時,函數(shù)為增函數(shù).∴時,最小.答:當分米時,該首飾盒制作費用最低.點睛:本題考查導數(shù)的實際應用.解題關(guān)鍵是求出費用關(guān)于的函數(shù)解析式,解題中要注意求出的取值范圍.然后就可由導數(shù)的知識求得最小值.19、;.【解題分析】
由已知,故,即點軌跡是以、為焦點的橢圓,根據(jù),,得出橢圓方程;由知,又因為,得出,進而求出,算出面積即可.【題目詳解】由已知,故點軌跡是以、為焦點的橢圓.設(shè)其方程為則即,又,故.點的軌跡的方程為:.由知.又.有,.【題目點撥】本題考查橢圓得方程求法,余弦定理,三角形面積公式的應用,屬于中檔題.20、(1)證明見解析;(2)證明見解析.【解題分析】分析:⑴兩邊同時平方即可證明不等式⑵構(gòu)造同理得到其他形式,然后運用不等式證明詳解:(1)證明:要證成立,只需證,即證,只需證,即證顯然為真,故原式成立.(2)證明:∵,∴.點睛:本題主要考查的是不等式的證明,著重考查了基本不等式的變形與應用,考查了綜合法和推理論證的能力,屬于中檔題。21、(Ⅰ);(Ⅱ).【解題分析】
(Ⅰ)當時,,因為是定義在上的奇函數(shù),所以可得;,進而求出解析式.(Ⅱ)由(Ⅰ)可得出函數(shù)的單調(diào)性,利用單調(diào)性解不等式.【題目詳解】(Ⅰ)當時,,因為是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版高新技術(shù)企業(yè)研發(fā)項目采購合同2篇
- 二零二五年度高校與公益組織合作辦學合同3篇
- 二零二五版家庭健康養(yǎng)生及食療服務合同3篇
- 二零二五年度生態(tài)雞養(yǎng)殖基地購銷合同標準版3篇
- 二零二五版桉樹生物質(zhì)能源開發(fā)合同2篇
- 二零二五年房地產(chǎn)銷售代理合同中止及終止協(xié)議6篇
- 二零二五版智能倉儲貨物承包運輸一體化合同3篇
- 二零二五年智能空調(diào)銷售及綠色環(huán)保安裝合同樣本3篇
- 二零二五年度車庫產(chǎn)權(quán)買賣及物業(yè)服務合同范本3篇
- 二零二五年文化藝術(shù)品油漆保護修復合同3篇
- 春節(jié)文化常識單選題100道及答案
- 2024年杭州師范大學附屬醫(yī)院招聘高層次緊缺專業(yè)人才筆試真題
- 24年追覓在線測評28題及答案
- TGDNAS 043-2024 成人靜脈中等長度導管置管技術(shù)
- 《陸上風電場工程概算定額》NBT 31010-2019
- 罐區(qū)自動化系統(tǒng)總體方案(31頁)ppt課件
- BIQS評分表模板
- 工程建設(shè)項目內(nèi)外關(guān)系協(xié)調(diào)措施
- 招投標法考試試題及答案
- 皮帶輸送機工程施工電氣安裝措施要點
- 藥房(冰柜)溫濕度表
評論
0/150
提交評論