




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省福州倉山區(qū)七校聯(lián)考2023年數(shù)學(xué)九年級第一學(xué)期期末預(yù)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖所示,將Rt△ABC繞其直角頂點C按順時針方向旋轉(zhuǎn)90°后得到Rt△DEC,連接AD,若∠B=65°,則∠ADE=()A.20° B.25° C.30° D.35°2.如圖,在正方形中,點是對角線的交點,過點作射線分別交于點,且,交于點.給出下列結(jié)論:;C;四邊形的面積為正方形面積的;.其中正確的是()A. B. C. D.3.如圖,網(wǎng)格中的兩個三角形是位似圖形,它們的位似中心是()A.點A B.點B C.點C D.點D4.拋物線y=(x+2)2﹣3可以由拋物線y=x2平移得到,則下列平移過程正確的是()A.先向左平移2個單位,再向上平移3個單位 B.先向左平移2個單位,再向下平移3個單位C.先向右平移2個單位,再向下平移3個單位 D.先向右平移2個單位,再向上平移3個單位5.二次函數(shù)圖像的頂點坐標(biāo)是()A. B. C. D.6.如圖,已知拋物線的對稱軸過點且平行于y軸,若點在拋物線上,則下列4個結(jié)論:①;②;③;④.其中正確結(jié)論的個數(shù)是()A.1 B.2 C.3 D.47.如圖,在中,平分于.如果,那么等于()A. B. C. D.8.下列圖形中,可以看作是中心對稱圖形的為()A. B. C. D.9.代數(shù)式有意義的條件是()A. B. C. D.10.某數(shù)學(xué)興趣小組開展動手操作活動,設(shè)計了如圖所示的三種圖形,現(xiàn)計劃用鐵絲按照圖形制作相應(yīng)的造型,則所用鐵絲的長度關(guān)系是()A.甲種方案所用鐵絲最長 B.乙種方案所用鐵絲最長C.丙種方案所用鐵絲最長 D.三種方案所用鐵絲一樣長:]二、填空題(每小題3分,共24分)11.如圖(1),在矩形ABCD中,將矩形折疊,使點B落在邊AD上,這時折痕與邊AD和BC分別交于點E、點F.然后再展開鋪平,以B、E、F為頂點的△BEF稱為矩形ABCD的“折痕三角形”.如圖(2),在矩形ABCD中,AB=2,BC=4,當(dāng)“折痕△BEF”面積最大時,點E的坐標(biāo)為_________________________.12.一元二次方程(x﹣5)(x﹣7)=0的解為_____.13.如圖所示,在平面直角坐標(biāo)系中,正方形OABC的頂點O與原點重合,頂點A,C分別在x軸、y軸上,雙曲線y=kx﹣1(k≠0,x>0)與邊AB、BC分別交于點N、F,連接ON、OF、NF.若∠NOF=45°,NF=2,則點C的坐標(biāo)為_____.14.如圖,在中,,以點A為圓心,2為半徑的與BC相切于點D,交AB于點E,交AC于點F,點P是上的一點,且,則圖中陰影部分的面積為______.15.二次函數(shù)(其中m>0),下列命題:①該圖象過點(6,0);②該二次函數(shù)頂點在第三象限;③當(dāng)x>3時,y隨x的增大而增大;④若當(dāng)x<n時,都有y隨x的增大而減小,則.正確的序號是____________.16.如圖,是的直徑,弦交于點,,,,則的長為_____.17.點(2,5)在反比例函數(shù)的圖象上,那么k=_____.18.如圖所示,個邊長為1的等邊三角形,其中點,,,,…在同一條直線上,若記的面積為,的面積為,的面積為,…,的面積為,則______.三、解答題(共66分)19.(10分)“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學(xué)生參加決賽,根據(jù)測試成績(成績都不低于50分)繪制出如圖所示的部分頻數(shù)分布直方圖.請根據(jù)圖中信息完成下列各題.(1)將頻數(shù)分布直方圖補充完整人數(shù);(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少;(3)現(xiàn)將從包括小明和小強在內(nèi)的4名成績優(yōu)異的同學(xué)中隨機選取兩名參加市級比賽,求小明與小強同時被選中的概率.20.(6分)對于平面直角坐標(biāo)系中的點和半徑為1的,定義如下:①點的“派生點”為;②若上存在兩個點,使得,則稱點為的“伴侶點”.應(yīng)用:已知點(1)點的派生點坐標(biāo)為________;在點中,的“伴侶點”是________;(2)過點作直線交軸正半軸于點,使,若直線上的點是的“伴侶點”,求的取值范圍;(3)點的派生點在直線,求點與上任意一點距離的最小值.21.(6分)如圖,甲分為三等分?jǐn)?shù)字轉(zhuǎn)盤,乙為四等分?jǐn)?shù)字轉(zhuǎn)盤,自由轉(zhuǎn)動轉(zhuǎn)盤.(1)轉(zhuǎn)動甲轉(zhuǎn)盤,指針指向的數(shù)字小于3的概率是;(2)同時自由轉(zhuǎn)動兩個轉(zhuǎn)盤,用列舉的方法求兩個轉(zhuǎn)盤指針指向的數(shù)字均為奇數(shù)的概率.22.(8分)如圖,在菱形ABCD中,對角線AC與BD相交于點M,已知BC=5,點E在射線BC上,tan∠DCE=,點P從點B出發(fā),以每秒2個單位沿BD方向向終點D勻速運動,過點P作PQ⊥BD交射線BC于點O,以BP、BQ為鄰邊構(gòu)造?PBQF,設(shè)點P的運動時間為t(t>0).(1)tan∠DBE=;(2)求點F落在CD上時t的值;(3)求?PBQF與△BCD重疊部分面積S與t之間的函數(shù)關(guān)系式;(4)連接?PBQF的對角線BF,設(shè)BF與PQ交于點N,連接MN,當(dāng)MN與△ABC的邊平行(不重合)或垂直時,直接寫出t的值.23.(8分)如圖,點在以線段為直徑的圓上,且,點在上,且于點,是線段的中點,連接、.(1)若,,求的長;(2)求證:.24.(8分)如圖所示,在平面直角坐標(biāo)系中,拋物線的頂點坐標(biāo)為,并與軸交于點,點是對稱軸與軸的交點.(1)求拋物線的解析式;(2)如圖①所示,是拋物線上的一個動點,且位于第一象限,連結(jié)BP、AP,求的面積的最大值;(3)如圖②所示,在對稱軸的右側(cè)作交拋物線于點,求出點的坐標(biāo);并探究:在軸上是否存在點,使?若存在,求點的坐標(biāo);若不存在,請說明理由.25.(10分)如圖,AB是的直徑,點C,D在上,且BD平分∠ABC.過點D作BC的垂線,與BC的延長線相交于點E,與BA的延長線相交于點F.(1)求證:EF與相切:(2)若AB=3,BD=,求CE的長.26.(10分)有四張背面相同的紙牌A、B、C、D,其正面上方分別畫有四個不同的幾何圖形,下方寫有四個不同算式,小明將四張紙牌背面朝上洗勻后摸出一張,將其余3張洗勻后再摸出一張.(1)用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結(jié)果(紙牌用A、B、C、D表示);(2)求摸出的兩張紙牌的圖形是中心對稱圖形且算式也正確的紙牌的概率.
參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=CD,∠CED=∠B,再判斷出△ACD是等腰直角三角形,然后根據(jù)等腰直角三角形的性質(zhì)求出∠CAD=45°,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式計算即可得解.【詳解】∵Rt△ABC繞其直角頂點C按順時針方向旋轉(zhuǎn)90°后得到Rt△DEC,∴AC=CD,∠CED=∠B=65°,∴△ACD是等腰直角三角形,∴∠CAD=45°,由三角形的外角性質(zhì)得:.故選:A.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的判定與性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.2、B【分析】根據(jù)全等三角形的判定(ASA)即可得到正確;根據(jù)相似三角形的判定可得正確;根據(jù)全等三角形的性質(zhì)可得正確;根據(jù)相似三角形的性質(zhì)和判定、勾股定理,即可得到答案.【詳解】解:四邊形是正方形,,,,,,故正確;,點四點共圓,∴,∴,故正確;,,,故正確;,,又,是等腰直角三角形,,,,,,,,,,又中,,,,故錯誤,故選.【點睛】本題考查全等三角形的判定(ASA)和性質(zhì)、相似三角形的性質(zhì)和判定、勾股定理,解題的關(guān)鍵是掌握全等三角形的判定(ASA)和性質(zhì)、相似三角形的性質(zhì)和判定.3、D【分析】利用對應(yīng)點的連線都經(jīng)過同一點進(jìn)行判斷.【詳解】如圖,位似中心為點D.故選D.【點睛】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應(yīng)頂點的連線相交于一點,對應(yīng)邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.注意:兩個圖形必須是相似形;對應(yīng)點的連線都經(jīng)過同一點;對應(yīng)邊平行.4、B【解析】根據(jù)“左加右減,上加下減”的原則進(jìn)行解答即可:∵y=x2,∴平移過程為:先向左平移2個單位,再向下平移3個單位.故選B.5、D【分析】先把二次函數(shù)進(jìn)行配方得到拋物線的頂點式,根據(jù)二次函數(shù)的性質(zhì)即可得到其頂點坐標(biāo).【詳解】∵,∴二次函數(shù)的頂點坐標(biāo)為.
故選:D.【點睛】本題考查二次函數(shù)的頂點坐標(biāo),配方是解決問題的關(guān)鍵,屬基礎(chǔ)題.6、B【分析】根據(jù)二次函數(shù)的圖象與性質(zhì)對各個結(jié)論進(jìn)行判斷,即可求出答案.【詳解】解:∵拋物線的對稱軸過點,∴拋物線的對稱軸為,即,可得由圖象可知,,則,∴,①正確;∵圖象與x軸有兩個交點,∴,即,②錯誤;∵拋物線的頂點在x軸的下方,∴當(dāng)x=1時,,③錯誤;∵點在拋物線上,即是拋物線與x軸的交點,由對稱軸可得,拋物線與x軸的另一個交點為,故當(dāng)x=?2時,,④正確;綜上所述:①④正確,故選:B.【點睛】本題主要考查了二次函數(shù)圖象與系數(shù)的關(guān)系、拋物線與x軸的交點,解題的關(guān)鍵是逐一分析每條結(jié)論是否正確.解決該題型題目時,熟練掌握二次函數(shù)的圖象與性質(zhì)是關(guān)鍵.7、D【分析】先根據(jù)直角三角形的性質(zhì)和角平分線的性質(zhì)可得,再根據(jù)等邊對等角可得,最后在中,利用直角三角形的性質(zhì)即可得.【詳解】平分則在中,故選:D.【點睛】本題考查了等腰三角形的性質(zhì)、角平分線的性質(zhì)、直角三角形的性質(zhì):(1)兩銳角互余;(2)所對的直角邊等于斜邊的一半;根據(jù)等腰三角形的性質(zhì)得出是解題關(guān)鍵.8、B【分析】根據(jù)中心對稱的定義,結(jié)合所給圖形即可作出判斷.【詳解】A、不是中心對稱圖形,故本選項錯誤;
B、是中心對稱圖形,故本選項正確;
C、不是中心對稱圖形,故本選項錯誤;
D、不是中心對稱圖形,故本選項錯誤;
故選:B.【點睛】此題考查中心對稱圖形的特點,解題關(guān)鍵在于判斷中心對稱圖形的關(guān)鍵是旋轉(zhuǎn)180°后能夠重合.9、B【分析】根據(jù)二次根式和分式成立的條件得到關(guān)于x的不等式,求解即可.【詳解】解:由題意得,解得.故選:B【點睛】本題考查了代數(shù)式有意義的條件,一般情況下,若代數(shù)式有意義,則分式的分母不等于1,二次根式被開方數(shù)大于等于1.10、D【解析】試題分析:解:由圖形可得出:甲所用鐵絲的長度為:2a+2b,乙所用鐵絲的長度為:2a+2b,丙所用鐵絲的長度為:2a+2b,故三種方案所用鐵絲一樣長.故選D.考點:生活中的平移現(xiàn)象二、填空題(每小題3分,共24分)11、(,2).【詳解】解:如圖,當(dāng)點B與點D重合時,△BEF面積最大,設(shè)BE=DE=x,則AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴點E坐標(biāo)(,2).故答案為:(,2).【點睛】本題考查翻折變換(折疊問題),利用數(shù)形結(jié)合思想解題是關(guān)鍵.12、x1=5,x2=7【分析】根據(jù)題意利用ab=0得到a=0或b=0,求出解即可.【詳解】解:方程(x﹣5)(x﹣7)=0,可得x﹣5=0或x﹣7=0,解得:x1=5,x2=7,故答案為:x1=5,x2=7.【點睛】本題考查解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關(guān)鍵.13、(0,+1)【分析】將△OAN繞點O逆時針旋轉(zhuǎn)90°,點N對應(yīng)N′,點A對應(yīng)A′,由旋轉(zhuǎn)和正方形的性質(zhì)即可得出點A′與點C重合,以及F、C、N′共線,通過角的計算即可得出∠N'OF=∠NOF=45°,結(jié)合ON′=ON、OF=OF即可證出△N'OF≌△NOF(SAS),由此即可得出N′M=NF=1,再由△OCF≌△OAN即可得出CF=N,通過邊與邊之間的關(guān)系即可得出BN=BF,利用勾股定理即可得出BN=BF=,設(shè)OC=a,則N′F=1CF=1(a﹣),由此即可得出關(guān)于a的一元一次方程,解方程即可得出點C的坐標(biāo).【詳解】將△OAN繞點O逆時針旋轉(zhuǎn)90°,點N對應(yīng)N′,點A對應(yīng)A′,如圖所示.∵OA=OC,∴OA′與OC重合,點A′與點C重合.∵∠OCN′+∠OCF=180°,∴F、C、N′共線.∵∠COA=90°,∠FON=45°,∴∠COF+∠NOA=45°.∵△OAN旋轉(zhuǎn)得到△OCN′,∴∠NOA=∠N′OC,∴∠COF+∠CON'=45°,∴∠N'OF=∠NOF=45°.在△N'OF與△NOF中,,∴△N′OF≌△NOF(SAS),∴NF=N'F=1.∵△OCF≌△OAN,∴CF=AN.又∵BC=BA,∴BF=BN.又∠B=90°,∴BF1+BN1=NF1,∴BF=BN=.設(shè)OC=a,則CF=AN=a﹣.∵△OAN旋轉(zhuǎn)得到△OCN′,∴AN=CN'=a﹣,∴N'F=1(a﹣),又∵N'F=1,∴1(a﹣)=1,解得:a=+1,∴C(0,+1).故答案是:(0,+1).【點睛】本題考查了反比例函數(shù)綜合題,涉及到了全等三角形的判定與性質(zhì)、旋轉(zhuǎn)的性質(zhì)以及勾股定理,解題的關(guān)鍵是找出關(guān)于a的一元一次方程.本題屬于中檔題,難度不大,解決該題型題目時,根據(jù)全等三角形的性質(zhì)找出相等的邊角關(guān)系是關(guān)鍵.14、【分析】圖中陰影部分的面積=S△ABC-S扇形AEF.由圓周角定理推知∠BAC=90°.【詳解】解:連接AD,在⊙A中,因為∠EPF=45°,所以∠EAF=90°,AD⊥BC,S△ABC=×BC×AD=×4×2=4S扇形AFDE=,所以S陰影=4-故答案為:【點睛】本題考查了切線的性質(zhì)與扇形面積的計算.求陰影部分的面積時,采用了“分割法”.15、①④【分析】先將函數(shù)解析式化成交點時后,可得對稱軸表達(dá)式,及與x軸交點坐標(biāo),由此可以判斷增減性.【詳解】解:,對稱軸為,①,故該函數(shù)圖象經(jīng)過,故正確;②,,該函數(shù)圖象頂點不可能在第三象限,故錯誤;③,則當(dāng)時,y隨著x的增大而增大,故此項錯誤;④當(dāng)時,即,y隨著x的增大而減小,故此項正確.【點睛】本題考查了二次函數(shù)的性質(zhì),掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.16、【分析】作于,連結(jié),由,得,由,,得,進(jìn)而得,根據(jù)勾股定理得,即可得到答案.【詳解】作于,連結(jié),如圖,∵,∴,∵,,∴,∴,∴,∵在中,,∴,∴,∵在中,,,∴,∴.故答案為:【點睛】本題主要考查垂徑定理和勾股定理的綜合,添加輔助線,構(gòu)造直角三角形和弦心距,是解題的關(guān)鍵.17、1【分析】直接把點(2,5)代入反比例函數(shù)求出k的值即可.【詳解】∵點(2,5)在反比例函數(shù)的圖象上,∴5=,解得k=1.故答案為:1.【點睛】此題考查求反比例函數(shù)的解析式,利用待定系數(shù)法求函數(shù)的解析式.18、【分析】由n+1個邊長為1的等邊三角形有一條邊在同一直線上,則B,B1,B2,B3,…Bn在一條直線上,可作出直線BB1.易求得△ABC1的面積,然后由相似三角形的性質(zhì),易求得S1的值,同理求得S2的值,繼而求得Sn的值.【詳解】如圖連接BB1,B1B2,B2B3;由n+1個邊長為1的等邊三角形有一條邊在同一直線上,則B,B1,B2,B3,…Bn在一條直線上.∴S△ABC1=×1×=∵B
B1∥AC1,∴△BD1B1∽△AC1D1,△BB1C1為等邊三角形則C1D1=BD1=;,△C1B1D1中C1D1邊上的高也為;∴S1=××=;同理可得;則=,∴S2=××=;同理可得:;∴=,Sn=××=.【點睛】此題考查了相似三角形的判定與性質(zhì)以及等邊三角形的性質(zhì).此題難度較大,屬于規(guī)律性題目,注意輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.三、解答題(共66分)19、(1)答案見解析(2)54%(3)【解析】(1)根據(jù)各組頻數(shù)之和等于總數(shù)可得分的人數(shù),據(jù)此即可補全直方圖;(2)用成績大于或等于80分的人數(shù)除以總?cè)藬?shù)可得;(3)列出所有等可能結(jié)果,再根據(jù)概率公式求解可得.【詳解】(1)70到80分的人數(shù)為人,補全頻數(shù)分布直方圖如下:(2)本次測試的優(yōu)秀率是;(3)設(shè)小明和小強分別為、,另外兩名學(xué)生為:、,則所有的可能性為:、、、、、,所以小明與小強同時被選中的概率為.【點睛】本題考查了頻數(shù)分布表、頻數(shù)分布直方圖,解題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用統(tǒng)計圖獲取信息時,必須認(rèn)真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題,也考查了列表法和畫樹狀圖求概率.20、(1)(1,0),E、D、;(2);(3)【分析】(1)根據(jù)定義即可得到點的坐標(biāo),過點E作的切線EM,連接OM,利用三角函數(shù)求出∠MEO=30°,即可得到點E是的“伴侶點”;根據(jù)點F、D、的坐標(biāo)得到線段長度與線段OE比較即可判定是否是的“伴侶點”;(2)根據(jù)題意求出,∠OGF=60°,由點是的“伴侶點”,過點P作的切線PA、PB,連接OP,OB,證明△OPG是等邊三角形,得到點P應(yīng)在線段PG上,過點P作PH⊥x軸于H,求出點P的橫坐標(biāo)是-,由此即可得到點P的橫坐標(biāo)m的取值范圍;(3)設(shè)點(x,-2x+6),P(m,n),根據(jù)派生點的定義得到3m+n=6,由此得到點P在直線y=-3x+6上,設(shè)直線y=-3x+6與x軸交于點A,與y軸交于點B,過點O作OH⊥AB于H,交于點C,求出AB的長,再根據(jù)面積公式求出OH即可得到答案.【詳解】(1)∵,∴點的派生點坐標(biāo)為(1,0),∵E(0,-2),∴OE=2,過點E作的切線EM,連接OM,∵OM=1,OE=2,∠OME=90°,∴sin∠MEO=,∴∠MEO=30°,而在的左側(cè)也有一個切點,使得組成的角等于30°,∴點E是的“伴侶點”;∵,∴OF=>OE,∴點F不可能是的“伴侶點”;∵,(1,0),,,∴點D、是的“伴侶點”,∴的“伴侶點”有:E、D、,故答案為:(1,0),E、D、;(2)如圖,直線l交y軸于點G,∵,∴,∠OGF=60°∵直線上的點是的“伴侶點”,∴過點P作的切線PA、PB,且∠APB=60°,連接OP,OB,∴∠BOP=30°,∵∠OBP=90°,OB=1,∴OP=2=OG,∴△OPG是等邊三角形,∴若點P是的“伴侶點”,則點P應(yīng)在線段PG上,過點P作PH⊥x軸于H,∵∠POH=90°-60°=30°,OP=2,∴PH=1,∴OH=,即點P的橫坐標(biāo)是-,∴當(dāng)直線上的點是的“伴侶點”時的取值范圍是;(3)設(shè)點(x,-2x+6),P(m,n),根據(jù)題意得:m+n=x,m-n=-2x+6,∴3m+n=6,即n=-3m+6,∴點P坐標(biāo)為(m,-3m+6),∴點P在直線y=-3x+6上,設(shè)直線y=-3x+6與x軸交于點A,與y軸交于點B,過點O作OH⊥AB于H,交于點C,如圖,則A(2,0),B(0,6),∴,∴,∴,∴,即點P與上任意一點距離的最小值為.【點睛】此題考查圓的性質(zhì),切線長定理,切線的性質(zhì),等腰三角形的性質(zhì),銳角三角函數(shù),特殊角的三角函數(shù)值,勾股定理,正確掌握各知識點是解題的關(guān)鍵.21、(1);(2)【解析】(1)根據(jù)甲盤中的數(shù)字,可判斷求出概率;(2)列出符合條件的所有可能,然后確定符合條件的可能,求出概率即可.【詳解】(1)甲轉(zhuǎn)盤共有1,2,3三個數(shù)字,其中小于3的有1,2,∴P(轉(zhuǎn)動甲轉(zhuǎn)盤,指針指向的數(shù)字小于3)=,故答案為.(2)樹狀圖如下:由樹狀圖知,共有12種等可能情況,其中兩個轉(zhuǎn)盤指針指向的數(shù)字為奇數(shù)的有4種情況,所以兩個轉(zhuǎn)盤指針指向的數(shù)字均為奇數(shù)的概率P==.22、(1);(1)t=;(3)見解析;(4)t的值為或或或1.【分析】(1)如圖1中,作DH⊥BE于H.解直角三角形求出BH,DH即可解決問題.(1)如圖1中,由PF∥CB,可得,由此構(gòu)建方程即可解決問題.(3)分三種情形:如圖3-1中,當(dāng)時,重疊部分是平行四邊形PBQF.如圖3-1中,當(dāng)時,重疊部分是五邊形PBQRT.如圖3-3中,當(dāng)1<t≤1時,重疊部分是四邊形PBCT,分別求解即可解決問題.
(4)分四種情形:如圖4-1中,當(dāng)MN∥AB時,設(shè)CM交BF于T.如圖4-1中,當(dāng)MN⊥BC時.如圖4-3中,當(dāng)MN⊥AB時.當(dāng)點P與點D重合時,MN∥BC,分別求解即可.【詳解】解:(1)如圖1中,作DH⊥BE于H.在Rt△BCD中,∵∠DHC=90°,CD=5,tan∠DCH=,∴DH=4,CH=3,∴BH=BC+CH=5+3=8,∴tan∠DBE===.故答案為.(1)如圖1中,∵四邊形ABCD是菱形,∴AC⊥BD,∵BC=5,tan∠CBM==,∴CM=,BM=DM=1,∵PF∥CB,∴=,∴=,解得t=.(3)如圖3﹣1中,當(dāng)0<t≤時,重疊部分是平行四邊形PBQF,S=PB?PQ=1t?t=10t1.如圖3﹣1中,當(dāng)<t≤1時,重疊部分是五邊形PBQRT,S=S平行四邊形PBQF﹣S△TRF=10t1﹣?[1t﹣(5﹣5t)]?[1t﹣(5﹣5t)]=﹣55t1+(10+50)t﹣15.如圖3﹣3中,當(dāng)1<t≤1時,重疊部分是四邊形PBCT,S=S△BCD﹣S△PDT=×5×4﹣?(5﹣t)?(4﹣1t)=﹣t1+10t.(4)如圖4﹣1中,當(dāng)MN∥AB時,設(shè)CM交BF于T.∵PN∥MT,∴=,∴=,∴MT=,∵M(jìn)N∥AB,∴===1,∴PB=BM,∴1t=×1,∴t=.如圖4﹣1中,當(dāng)MN⊥BC時,易知點F落在DH時,∵PF∥BH,∴=,∴=,解得t=.如圖4﹣3中,當(dāng)MN⊥AB時,易知∠PNM=∠ABD,可得tan∠PNM==,∴=,解得t=,當(dāng)點P與點D重合時,MN∥BC,此時t=1,綜上所述,滿足條件的t的值為或或或1.【點睛】本題屬于四邊形綜合題,考查了菱形的性質(zhì),平行四邊形的性質(zhì),平行線分線段成比例定理,解直角三角形等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.23、(1)5;(2)見解析【分析】(1)利用圓周角定理和圓心角、弧、弦的關(guān)系得到∠ACB=90°,且AC=BC,則∠A=45°,再證明△ADE為等腰直角三角形,所以AE=DE=6,接著利用勾股定理計算出BC,然后根據(jù)直角三角形斜邊上的中線性質(zhì)得到EF的長;(2)如圖,連接CF,利用圓周角定理得到∠BED=∠AED=∠ACB=90°,再根據(jù)直角三角形斜邊上的中線性質(zhì)得CF=EF=FB=FD,利用圓的定義可判斷B、C、D、E在以BD為直徑的圓上,根據(jù)圓周角定理得到∠EFC=2∠EBC=90°,然后利用△EFC為等腰直角三角形得到.【詳解】解:(1)∵點在以線段為直徑的圓上,且∴,且∵,,,∴,在中,∵,,∴,又∵是線段的中點,∴;(2)如圖,連接,線段與之間的數(shù)量關(guān)系是;∵,∵點是的中點,∴,∵,,∴,同理,∴,即,∴;【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.也考查了等腰直角三角形的判定與性質(zhì).24、(1);(2)當(dāng)時,最大值為;(3)存在,點坐標(biāo)為,理由見解析【分析】(1)利用待定系數(shù)法可求出二次函數(shù)的解析式;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 京東 連鎖加盟合同范例
- 乙方填寫合同范例
- 個人購買擔(dān)保合同標(biāo)準(zhǔn)文本
- 為不用合同標(biāo)準(zhǔn)文本
- 可持續(xù)發(fā)展下的醫(yī)院運營管理計劃
- 保安行業(yè)自律與管理機制探討計劃
- 供應(yīng)商開發(fā)策略的總結(jié)與反思計劃
- 養(yǎng)馬合同標(biāo)準(zhǔn)文本
- 2025建筑材料購銷合同
- 醫(yī)學(xué)臨床癥狀練習(xí)測試題附答案
- 寺廟祈?;顒臃桨?共6篇)
- 2024-2030年中國稅務(wù)師事務(wù)所行業(yè)發(fā)展戰(zhàn)略及管理模式分析報告
- 梅尼埃病的護(hù)理查房
- 精釀啤酒廠合作協(xié)議書范文
- 勞務(wù)分包的工程施工組織設(shè)計方案
- 2024年資格考試-對外漢語教師資格證考試近5年真題集錦(頻考類試題)帶答案
- 一般生產(chǎn)經(jīng)營單位安全培訓(xùn)試題含完整答案(各地真題)
- 開大2018-社區(qū)管理-網(wǎng)上作業(yè)答案
- 北京公交集團(tuán)招聘筆試題庫2024
- 2024反詐知識競賽考試題庫及答案(三份)
- 新版SEW MOVIDRIVE MDX61B調(diào)試步驟(variable setpoint)VER.4.4
評論
0/150
提交評論