版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
StatisticalThoughtEnglishEditionCoursewareIntroductionDescriptivestatisticsFundamentalsofProbabilityTheoryInferentialstatisticsBayesianstatisticsTimeseriesanalysisNonparametricstatisticsIntroduction01Learningmethods:Thecourseoptionsacombinationoftheoreticalknowledgeandpracticalexercises,allowinglearnerstogainadeepunderstandingofstatisticalthinkinganditsapplicationsthroughhands-onexperienceCoursecontent:Thiscourseprovidesanintroductiontostatisticalthinking,includingbasicstatisticalconcepts,methods,andapplicationsItcoversawiderangeoftopics,suchasdescriptivestatistics,probabilitytheory,inferentialstatistics,andstatisticalmodelingLearningobjectives:Thecourseaimstocultivatestudents'statisticalthinkingability,improvetheirdataanalysisandproblem-solvingskills,andenablethemtoapplystatisticalmethodstorealworldproblemseffectivelyCourseIntroductionTheimportanceofstatisticalthinkingProblemsolvingskills:Statisticalthinkingisanessentialskillforproblemsolvinginthemodernworld,asithelpsindividualsanalyzecomplexdata,identifypatternsandtrends,andmakeinformeddecisionsbasedonevidenceDatadrivendecisionmaking:Withtheincreasingavailabilityofdatainvariousfields,theabilitytousestatisticalthinkingtointerpretandanalyzedatahasbecomecrucialforeffectivedecisionmakingStatisticalthinkinghelpsindividualsmakedatadrivendecisionsthatareevidencebasedandrelatedScientificresearch:Statisticalthinkingisessentialinthefieldofscientificresearch,whereitisusedtodesignexperiments,collectandanalyzedata,anddrawconclusionsbasedonevidenceItplaysacriticalroleinthedevelopmentofnewknowledgeandtheoriesindifferentfields,includingthenaturalsciences,socialsciences,andhumanitiesDescriptivestatistics02
CollectionandorganizationofdataCollectdataGatherinformationthroughsurveys,experiences,ordatabasesEnsureaccuracyUsereliableandvalidmethodstocollectdatatominimizeerrorsandbiasesOrganizedataArrangeandstructurethecollecteddatainameaningfulwayforanalysisCalculatemeasuresofcentraltensionCalculatemean,media,andmodetodescribethecenterofthedatadistributionDeterminemeasuresofspreadCalculaterange,variance,andstandarddeviationtodescribethedispersionofthedataIdentifyoutliersIdentifyandhandledatapointsthataresignificantlydifferentfromtherestofthedataMethodofdescribingdataUsehistoriestovisualizethefrequencydistributionofdataCreatehistoriesBarchartsareusefulforcomparingcategoricalvariablesMakebarchartsScatterplotsareusedtovisualizetherelationshipbetweentwocontinuousvariablesDrawscatterplotsBoxplotsprovideavisualsummaryofnumericaldata,showingtherange,quarters,andmediaProduceboxplotsVisualizationofdataFundamentalsofProbabilityTheory03ThebasicconceptofprobabilityThebasicconceptofprobabilitydefinesthelifestyleofaneventhappeningSummaryProbabilityisameasureofthelikelihoodofaneventoccurring,expressedasanumberbetween0and1Aprobabilityof0meanstheeventcannothappen,whileaprobabilityof1meanstheeventwillhappenProbabilitytheoryisthefoundationforstatisticalinferenceanddecisionmakingDetailsRandomvariablesarequantitiesthatcantakedifferentvalues,andtheirdistributionsdescribethelifestyleofeachvalueSummaryRandomvariablescanbediscrete,takingafixedsetofvalues,orcontinuous,takinganyvaluewithinarangeDistributionsdescribethelikelihoodofeachvalue,suchasthebinarydistributionfordistinctvariablesorthenormaldistributionforcontinuousvariablesDetailsRandomvariablesandtheirdistributionsSummaryParameterestimationistheprocessofinferringunknownparametersofadistribution,whilehypothesistestingisusedtoevaluatewhereagivenhypothesisistrueorfalse要點一要點二DetailsParameterestimationtechniquesincludemaximumlikelihoodestimationandBayesianestimationHypothesistestingusesstatisticalteststodeterminewhichgivenhypothesisissupportedbythedataornotCommonlyusedhypothesistestsincludethet-test,chisquaretest,andANOVAtestParameterestimationandhypothesistestingInferentialstatistics04ItisastatisticalmethodthatexaminestherelationshipbetweenonedependentvariableandoneormoreindependentvariablesIthelpsinpredictingthedependentvariablesbasedontheindependentvariablesItextendsthelinearregressionbyincludingmultipleindependentvariablestopredictthedependentvariablesIthelpsinunderstandingtherelativeimportanceofdifferentindependentvariablesinpredictingthedependentvariablesItisusedtopredictbinaryoutcomesbymodelingtheprobabilityoftheeventoccurringusingalogisticfunctionItiscommonlyusedinareaslikemarketing,finance,andmedicalresearchLinearregressionMultipleregressionLogisticregressionRegressionanalysisANOVA(AnalysisofVariance)ItisastatisticaltechniqueusedtocomparethemeansoftwoormoregroupsIttestswhicharesignificantlydifferentfromeachother,indicatingapossibleeffectofatreatmentorotherfactoronthegroupsANCOVA(AnalysisofCovariance)ItisanextensionofANOVAthatallowsfortheinclusionofadditionalvariablesthatmayaffectthedependentvariables,beyondthegroupsIthelpsincontrollingforconsolidatingvariablesandprovidingamoreaccurateestimateoftheeffectofthetreatmentVarianceanalysisDecisionTreeandRandomForestDecisionTree:ItisagraphicalrepresentationofadecisionmakingprocessthatleadstoaconclusionItiscommonlyusedinmachinelearningalgorithmstoclassifyorpredictoutputsbasedoninputfeaturesAdecisiontreeconsistencyofnodesandbranchesthatrepresentsdifferentdecisionsandoutcomesRandomForest:ItisanensemblelearningmethodthatcombinesthepredictionsofmultipledecisiontreestoimproveaccuracyandreduceoverfittingEachtreeintherandomforestisbuiltonasubsetofthedataandusesarandomsubsetoffeaturesateachnodeformakingdecisionsThefinalpredictionismadebyaggregatingthepredictionsofallthetreesintheforestRandomforestsareknownfortheiraccuracy,robustness,andabilitytohandlelargedatasetseffectivelyBayesianstatistics05TheBayesiantheoryisafundamentaltheoryinBayesianstatistics,whichprovidesamathematicalexpressionfortheconditionalprobabilityofeventsItisakeytoolinupdatingbeliefsinthelightofnewevidenceBayesiantheoryTheBayesiantheoryhasbeenwidelyusedinvariousfieldsofscientificresearch,suchasmedicaldiagnosis,signalprocessing,andnaturallanguageprocessingItallowsresearcherstoincorporatepriorknowledgeintotheiranalysisandmakemoreaccurateconsultationsApplicationsinScientificResearchBayesiantheoryanditsapplicationsDefinitionABayesiannetworkisaprobabilisticgraphicalmodelthatreportsthejointprobabilitydistributionofasetofrandomvariablesItusesadirectedacidicgraphtoreportconditionalindependencerelationshipsamongvariablesApplicationsindecisionmakingBayesiannetworkshavebeenusedinvariousdecisionmakingproblems,suchasmedicaldiagnosis,financialriskassessment,andmilitarydecisionmakingTheyprovideastructuredwaytoreportuncertaintyandmakedecisionsunderuncertaintyBayesiannetworkIntroductionBayesiandecisionanalysisisaframeworkformakingdecisionsunderuncertaintyusingBayesianprobabilitytheoryItintegratestheprinciplesofdecisiontheorywithBayesianstatisticstoprovideasystematicapproachfordecisionmakingApplicationsinrealworldproblemsBayesiandecisionanalysishasbeenappliedtosolverealworldproblems,suchasmedicaltreatmentdecisions,inventorymanagement,andfinancialportfoliomanagementItallowsdecisionmakerstotakeintoaccountboththeuncertaintyofoutcomesandthevalueofinformationintheirdecisionsBayesiandecisionanalysisTimeseriesanalysis06010203DefinitionThestationarityofatimeseriesreferstoitsstatisticalcharacteristicsthatdonotchangeovertime.TestingmethodThestationarityofthetimeseriesistestedbyobservingthemean,variance,andautocorrelationplotofthetimeseries,aswellasconductingstatisticaltestssuchasADFandPPtests.ImportanceStationarityisaprerequisitefortimeseriesanalysis,asmanytimeseriesanalysismethodsassumethatthedataisstationary.TestingthestationoftimeseriesDefinitionARIMAmodelisastatisticalmodelusedforanalyzingandpredictingtimeseriesdata,whichincludesthreeparts:autoregressive(AR),difference(I),andmovingaverage(MA).ModelingstepsFirst,performdifferentialanalysisonthedatatoeliminatenonstationarity,thenidentifyandestimatetheparametersofthemodel,andfinallymakepredictions.ApplicationscenarioWidelyusedintimeseriesforecastinginfieldssuchasfinance,economy,andmeteorology.ARIMAmodel要點三DefinitionSeasonaltimeseriesreferstoatimeserieswithperiodicchanges,suchasmonthly,quarterly,orannualdata.要點一要點二AnalysismethodAnalyzeseasonaltimeseriesbyobservingtheseasonalchartandseasonalindexofthetimeseries,andusingmodelssuchasseasonalautoregressiveintegralmovingaverage(SARIMA).ApplicationscenarioSuitablefordatawithobviousseasonalcharacteristics,suchassalesdata,climatedata,etc.要點三SeasonaltimeseriesanalysisNonparametricstatistics07Kerneldensityestimationisanonparametricstatisticalmethodusedtoestimateunknownpr
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 賓館協(xié)議合同范例
- 店鋪轉(zhuǎn)租協(xié)議合同范例
- 做石合同范例
- 農(nóng)村個人建房合同范例
- 人人車合同范例
- 工廠拆除出售合同范例
- 工廠拆卸合同范例
- 廢氣處理合同范例
- 建學(xué)校圍墻合同范例
- 數(shù)學(xué)思維的啟蒙
- 02565+24273中醫(yī)藥學(xué)概論
- 第十一單元跨學(xué)科實踐活動10調(diào)查我國航天科技領(lǐng)域中新型材料、新型能源的應(yīng)用教學(xué)設(shè)計-2024-2025學(xué)年九年級化學(xué)人教版下冊
- 【MOOC】市場調(diào)查與研究-南京郵電大學(xué) 中國大學(xué)慕課MOOC答案
- 2024年公安機(jī)關(guān)理論考試題庫500道
- 2024年中國主題公園競爭力評價報告-中國主題公園研究院
- 2024油氣管道無人機(jī)巡檢作業(yè)標(biāo)準(zhǔn)
- 廣東省深圳市寶安區(qū)多校2024-2025學(xué)年九年級上學(xué)期期中歷史試題
- 重大(2023)版信息科技五年級上冊教學(xué)設(shè)計
- 廣州市海珠區(qū)六中鷺翔杯物理體驗卷
- 標(biāo)準(zhǔn)查新報告
- 2025公司集團(tuán)蛇年新春年會游園(靈蛇舞動共創(chuàng)輝煌主題)活動策劃方案-31P
評論
0/150
提交評論