版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省揚州市高三第三次測評數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)的圖象過點,則它的一條對稱軸方程可能是()A. B. C. D.2.已知等比數(shù)列的前項和為,且滿足,則的值是()A. B. C. D.3.已知是雙曲線的兩個焦點,過點且垂直于軸的直線與相交于兩點,若,則的內(nèi)切圓半徑為()A. B. C. D.4.已知函數(shù).下列命題:①函數(shù)的圖象關于原點對稱;②函數(shù)是周期函數(shù);③當時,函數(shù)取最大值;④函數(shù)的圖象與函數(shù)的圖象沒有公共點,其中正確命題的序號是()A.①④ B.②③ C.①③④ D.①②④5.已知函數(shù),,且,則()A.3 B.3或7 C.5 D.5或86.過雙曲線的右焦點F作雙曲線C的一條弦AB,且,若以AB為直徑的圓經(jīng)過雙曲線C的左頂點,則雙曲線C的離心率為()A. B. C.2 D.7.記其中表示不大于x的最大整數(shù),若方程在在有7個不同的實數(shù)根,則實數(shù)k的取值范圍()A. B. C. D.8.已知直線與直線則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件9.若兩個非零向量、滿足,且,則與夾角的余弦值為()A. B. C. D.10.已知菱形的邊長為2,,則()A.4 B.6 C. D.11.已知全集,集合,則()A. B. C. D.12.在等腰直角三角形中,,為的中點,將它沿翻折,使點與點間的距離為,此時四面體的外接球的表面積為().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知“在中,”,類比以上正弦定理,“在三棱錐中,側(cè)棱與平面所成的角為、與平面所成的角為,則________.14.已知函數(shù)是偶函數(shù),直線與函數(shù)的圖象自左向右依次交于四個不同點A,B,C,D.若AB=BC,則實數(shù)t的值為_________.15.已知雙曲線的兩條漸近線方程為,若頂點到漸近線的距離為1,則雙曲線方程為.16.已知,滿足約束條件,則的最大值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)記無窮數(shù)列的前項中最大值為,最小值為,令,則稱是“極差數(shù)列”.(1)若,求的前項和;(2)證明:的“極差數(shù)列”仍是;(3)求證:若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.18.(12分)已知中,角所對邊的長分別為,且(1)求角的大??;(2)求的值.19.(12分)如圖,在中,已知,,,為線段的中點,是由繞直線旋轉(zhuǎn)而成,記二面角的大小為.(1)當平面平面時,求的值;(2)當時,求二面角的余弦值.20.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.21.(12分)某商場為改進服務質(zhì)量,在進場購物的顧客中隨機抽取了人進行問卷調(diào)查.調(diào)查后,就顧客“購物體驗”的滿意度統(tǒng)計如下:滿意不滿意男女是否有的把握認為顧客購物體驗的滿意度與性別有關?若在購物體驗滿意的問卷顧客中按照性別分層抽取了人發(fā)放價值元的購物券.若在獲得了元購物券的人中隨機抽取人贈其紀念品,求獲得紀念品的人中僅有人是女顧客的概率.附表及公式:.22.(10分)已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若滿足,,,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
把已知點坐標代入求出,然后驗證各選項.【詳解】由題意,,或,,不妨取或,若,則函數(shù)為,四個選項都不合題意,若,則函數(shù)為,只有時,,即是對稱軸.故選:B.【點睛】本題考查正弦型復合函數(shù)的對稱軸,掌握正弦函數(shù)的性質(zhì)是解題關鍵.2、C【解析】
利用先求出,然后計算出結(jié)果.【詳解】根據(jù)題意,當時,,,故當時,,數(shù)列是等比數(shù)列,則,故,解得,故選.【點睛】本題主要考查了等比數(shù)列前項和的表達形式,只要求出數(shù)列中的項即可得到結(jié)果,較為基礎.3、B【解析】
首先由求得雙曲線的方程,進而求得三角形的面積,再由三角形的面積等于周長乘以內(nèi)切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長為,設的內(nèi)切圓的半徑為,則,故選:B【點睛】本題考查雙曲線的定義、方程和性質(zhì),考查三角形的內(nèi)心的概念,考查了轉(zhuǎn)化的思想,屬于中檔題.4、A【解析】
根據(jù)奇偶性的定義可判斷出①正確;由周期函數(shù)特點知②錯誤;函數(shù)定義域為,最值點即為極值點,由知③錯誤;令,在和兩種情況下知均無零點,知④正確.【詳解】由題意得:定義域為,,為奇函數(shù),圖象關于原點對稱,①正確;為周期函數(shù),不是周期函數(shù),不是周期函數(shù),②錯誤;,,不是最值,③錯誤;令,當時,,,,此時與無交點;當時,,,,此時與無交點;綜上所述:與無交點,④正確.故選:.【點睛】本題考查函數(shù)與導數(shù)知識的綜合應用,涉及到函數(shù)奇偶性和周期性的判斷、函數(shù)最值的判斷、兩函數(shù)交點個數(shù)問題的求解;本題綜合性較強,對于學生的分析和推理能力有較高要求.5、B【解析】
根據(jù)函數(shù)的對稱軸以及函數(shù)值,可得結(jié)果.【詳解】函數(shù),若,則的圖象關于對稱,又,所以或,所以的值是7或3.故選:B.【點睛】本題考查的是三角函數(shù)的概念及性質(zhì)和函數(shù)的對稱性問題,屬基礎題6、C【解析】
由得F是弦AB的中點.進而得AB垂直于x軸,得,再結(jié)合關系求解即可【詳解】因為,所以F是弦AB的中點.且AB垂直于x軸.因為以AB為直徑的圓經(jīng)過雙曲線C的左頂點,所以,即,則,故.故選:C【點睛】本題是對雙曲線的漸近線以及離心率的綜合考查,是考查基本知識,屬于基礎題.7、D【解析】
做出函數(shù)的圖象,問題轉(zhuǎn)化為函數(shù)的圖象在有7個交點,而函數(shù)在上有3個交點,則在上有4個不同的交點,數(shù)形結(jié)合即可求解.【詳解】作出函數(shù)的圖象如圖所示,由圖可知方程在上有3個不同的實數(shù)根,則在上有4個不同的實數(shù)根,當直線經(jīng)過時,;當直線經(jīng)過時,,可知當時,直線與的圖象在上有4個交點,即方程,在上有4個不同的實數(shù)根.故選:D.【點睛】本題考查方程根的個數(shù)求參數(shù),利用函數(shù)零點和方程之間的關系轉(zhuǎn)化為兩個函數(shù)的交點是解題的關鍵,運用數(shù)形結(jié)合是解決函數(shù)零點問題的基本思想,屬于中檔題.8、B【解析】
利用充分必要條件的定義可判斷兩個條件之間的關系.【詳解】若,則,故或,當時,直線,直線,此時兩條直線平行;當時,直線,直線,此時兩條直線平行.所以當時,推不出,故“”是“”的不充分條件,當時,可以推出,故“”是“”的必要條件,故選:B.【點睛】本題考查兩條直線的位置關系以及必要不充分條件的判斷,前者應根據(jù)系數(shù)關系來考慮,后者依據(jù)兩個條件之間的推出關系,本題屬于中檔題.9、A【解析】
設平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數(shù)量積的運算律可求得的值,即為所求.【詳解】設平面向量與的夾角為,,可得,在等式兩邊平方得,化簡得.故選:A.【點睛】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數(shù)量積的運算性質(zhì)的應用,考查計算能力,屬于中等題.10、B【解析】
根據(jù)菱形中的邊角關系,利用余弦定理和數(shù)量積公式,即可求出結(jié)果.【詳解】如圖所示,菱形形的邊長為2,,∴,∴,∴,且,∴,故選B.【點睛】本題主要考查了平面向量的數(shù)量積和余弦定理的應用問題,屬于基礎題..11、D【解析】
根據(jù)函數(shù)定義域的求解方法可分別求得集合,由補集和交集定義可求得結(jié)果.【詳解】,,,.故選:.【點睛】本題考查集合運算中的補集和交集運算問題,涉及到函數(shù)定義域的求解,屬于基礎題.12、D【解析】
如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉(zhuǎn)化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點,這樣根據(jù)幾何關系,求外接球的半徑.【詳解】中,易知,翻折后,,,設外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點,設幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【點睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計算能力,屬于中檔題型,求幾何體的外接球的半徑時,一般可以用補形法,因正方體,長方體的外接球半徑容易求,可以將一些特殊的幾何體補形為正方體或長方體,比如三條側(cè)棱兩兩垂直的三棱錐,或是構(gòu)造直角三角形法,確定球心的位置,構(gòu)造關于外接球半徑的方程求解.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
類比,三角形邊長類比三棱錐各面的面積,三角形內(nèi)角類比三棱錐中側(cè)棱與面所成角.【詳解】,故,【點睛】本題考查類比推理.類比正弦定理可得,類比時有結(jié)構(gòu)類比,方法類比等.14、【解析】
由是偶函數(shù)可得時恒有,根據(jù)該恒等式即可求得,,的值,從而得到,令,可解得,,三點的橫坐標,根據(jù)可列關于的方程,解出即可.【詳解】解:因為是偶函數(shù),所以時恒有,即,所以,所以,解得,,;所以;由,即,解得;故,.由,即,解得.故,.因為,所以,即,解得,故答案為:.【點睛】本題考查函數(shù)奇偶性的性質(zhì)及二次函數(shù)的圖象、性質(zhì),考查學生的計算能力,屬中檔題.15、【解析】由已知,即,取雙曲線頂點及漸近線,則頂點到該漸近線的距離為,由題可知,所以,則所求雙曲線方程為.16、【解析】
根據(jù)題意,畫出可行域,將目標函數(shù)看成可行域內(nèi)的點與原點距離的平方,利用圖象即可求解.【詳解】可行域如圖所示,易知當,時,的最大值為.故答案為:9.【點睛】本題考查了利用幾何法解決非線性規(guī)劃問題,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析(3)證明見解析【解析】
(1)由是遞增數(shù)列,得,由此能求出的前項和.(2)推導出,,由此能證明的“極差數(shù)列”仍是.(3)證當數(shù)列是等差數(shù)列時,設其公差為,,是一個單調(diào)遞增數(shù)列,從而,,由,,,分類討論,能證明若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【詳解】(1)解:∵無窮數(shù)列的前項中最大值為,最小值為,,,是遞增數(shù)列,∴,∴的前項和.(2)證明:∵,,∴,∴,∵,∴,∴的“極差數(shù)列”仍是(3)證明:當數(shù)列是等差數(shù)列時,設其公差為,,根據(jù),的定義,得:,,且兩個不等式中至少有一個取等號,當時,必有,∴,∴是一個單調(diào)遞增數(shù)列,∴,,∴,∴,∴是等差數(shù)列,當時,則必有,∴,∴是一個單調(diào)遞減數(shù)列,∴,,∴,∴.∴是等差數(shù)列,當時,,∵,中必有一個為0,根據(jù)上式,一個為0,為一個必為0,∴,,∴數(shù)列是常數(shù)數(shù)列,則數(shù)列是等差數(shù)列.綜上,若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【點睛】本小題主要考查新定義數(shù)列的理解和運用,考查等差數(shù)列的證明,考查數(shù)列的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于難題.18、(1);(2).【解析】
(1)正弦定理的邊角轉(zhuǎn)換,以及兩角和的正弦公式展開,特殊角的余弦值即可求出答案;(2)構(gòu)造齊次式,利用正弦定理的邊角轉(zhuǎn)換,得到,結(jié)合余弦定理得到【詳解】解:(1)由已知,得又∵∴∴,因為得∵∴.(2)∵又由余弦定理,得∴【點睛】1.考查學生對正余弦定理的綜合應用;2.能處理基本的邊角轉(zhuǎn)換問題;3.能利用特殊的三角函數(shù)值推特殊角,屬于中檔題19、(1);(2).【解析】
(1)平面平面,建立坐標系,根據(jù)法向量互相垂直求得;(2)求兩個平面的法向量的夾角.【詳解】(1)如圖,以為原點,在平面內(nèi)垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標系,則,設為平面的一個法向量,由得,取,則因為平面的一個法向量為由平面平面,得所以即.(2)設二面角的大小為,當平面的一個法向量為,綜上,二面角的余弦值為.【點睛】本題考查用空間向量求平面間的夾角,平面與平面垂直的判定,二面角的平面角及求法,難度一般.20、.【解析】試題分析:,所以.試題解析:B.因為,所以.21、有的把握認為顧客購物體驗的滿意度與性別有關;.【解析】
由題得,根據(jù)數(shù)據(jù)判斷出顧客購物體驗的滿意度與性別有關;獲得了元購物券的人中男顧客有人,記為,;女顧客有人,記為,,,.從中隨機抽取人,所有基本事件有個,其中僅有1人是女顧客的基本事件有個,進而求出獲得紀念品的人中僅有人是女顧客的概率.【詳解】解析:由題得所以,有的把握認為顧客購物體驗的滿意度與性別有關.獲得了元購物券的人中男顧客有人,記為,;女顧客有人,記為,,,.從中隨機抽取人,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年版注塑設備售后服務與技術支持合同范本3篇
- 2025年個人砌磚工程承包建筑材料采購與質(zhì)量監(jiān)管合同2篇
- 2025年度美容院品牌形象設計及推廣合同8篇
- 二零二五年度成都離婚協(xié)議公證法律咨詢及服務合同3篇
- 二零二四年度醫(yī)療機構(gòu)醫(yī)療器械質(zhì)量控制合同3篇
- 二零二五年度果園承包與農(nóng)業(yè)廢棄物資源化利用合同7篇
- 二零二五版美團外賣商家知識產(chǎn)權保護與使用合同4篇
- 二零二五年度程序員入職知識產(chǎn)權保護合同4篇
- 2025年度個人知識產(chǎn)權保護合同范本全新解讀4篇
- 2025年度旅游度假村裝修設計與施工合同2篇
- 2024年山東省泰安市高考物理一模試卷(含詳細答案解析)
- 護理指南手術器械臺擺放
- 腫瘤患者管理
- 2025年中國航空部附件維修行業(yè)市場競爭格局、行業(yè)政策及需求規(guī)模預測報告
- 2025春夏運動戶外行業(yè)趨勢白皮書
- 《法制宣傳之盜竊罪》課件
- 通信工程單位勞動合同
- 2024年醫(yī)療器械經(jīng)營質(zhì)量管理規(guī)范培訓課件
- 零部件測繪與 CAD成圖技術(中職組)沖壓機任務書
- 2024年計算機二級WPS考試題庫380題(含答案)
- 高低壓配電柜產(chǎn)品營銷計劃書
評論
0/150
提交評論