2024屆天津市薊縣高考仿真模擬數(shù)學(xué)試卷含解析_第1頁
2024屆天津市薊縣高考仿真模擬數(shù)學(xué)試卷含解析_第2頁
2024屆天津市薊縣高考仿真模擬數(shù)學(xué)試卷含解析_第3頁
2024屆天津市薊縣高考仿真模擬數(shù)學(xué)試卷含解析_第4頁
2024屆天津市薊縣高考仿真模擬數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆天津市薊縣高考仿真模擬數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中所對的邊分別是,若,則()A.37 B.13 C. D.2.一個四面體所有棱長都是4,四個頂點在同一個球上,則球的表面積為()A. B. C. D.3.已知為圓的一條直徑,點的坐標(biāo)滿足不等式組則的取值范圍為()A. B.C. D.4.過拋物線的焦點作直線與拋物線在第一象限交于點A,與準(zhǔn)線在第三象限交于點B,過點作準(zhǔn)線的垂線,垂足為.若,則()A. B. C. D.5.為得到y(tǒng)=sin(2x-πA.向左平移π3個單位B.向左平移πC.向右平移π3個單位D.向右平移π6.已知甲盒子中有個紅球,個藍球,乙盒子中有個紅球,個藍球,同時從甲乙兩個盒子中取出個球進行交換,(a)交換后,從甲盒子中取1個球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個數(shù)記為.則()A. B.C. D.7.為研究語文成績和英語成績之間是否具有線性相關(guān)關(guān)系,統(tǒng)計兩科成績得到如圖所示的散點圖(兩坐標(biāo)軸單位長度相同),用回歸直線近似地刻畫其相關(guān)關(guān)系,根據(jù)圖形,以下結(jié)論最有可能成立的是()A.線性相關(guān)關(guān)系較強,b的值為1.25B.線性相關(guān)關(guān)系較強,b的值為0.83C.線性相關(guān)關(guān)系較強,b的值為-0.87D.線性相關(guān)關(guān)系太弱,無研究價值8.如圖,在平行四邊形中,對角線與交于點,且,則()A. B.C. D.9.已知我市某居民小區(qū)戶主人數(shù)和戶主對戶型結(jié)構(gòu)的滿意率分別如圖和如圖所示,為了解該小區(qū)戶主對戶型結(jié)構(gòu)的滿意程度,用分層抽樣的方法抽取的戶主進行調(diào)查,則樣本容量和抽取的戶主對四居室滿意的人數(shù)分別為A.240,18 B.200,20C.240,20 D.200,1810.已知隨機變量的分布列是則()A. B. C. D.11.已知正項等比數(shù)列中,存在兩項,使得,,則的最小值是()A. B. C. D.12.已知,,,若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在△ABC中,AB=AC=2,,,AE的延長線交BC邊于點F,若,則____.14.實數(shù),滿足約束條件,則的最大值為__________.15.函數(shù)f(x)=x2﹣xlnx的圖象在x=1處的切線方程為_____.16.如圖,在平面四邊形中,點,是橢圓短軸的兩個端點,點在橢圓上,,記和的面積分別為,,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,平面分別是上的動點,且.(1)若平面與平面的交線為,求證:;(2)當(dāng)平面平面時,求平面與平面所成的二面角的余弦值.18.(12分)已知函數(shù),.(1)證明:函數(shù)的極小值點為1;(2)若函數(shù)在有兩個零點,證明:.19.(12分)設(shè)數(shù)列是公差不為零的等差數(shù)列,其前項和為,,若,,成等比數(shù)列.(1)求及;(2)設(shè),設(shè)數(shù)列的前項和,證明:.20.(12分)在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產(chǎn)品的研發(fā)投入.為了對新研發(fā)的產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格試銷,得到一組檢測數(shù)據(jù)如表所示:試銷價格(元)產(chǎn)品銷量(件)已知變量且有線性負相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學(xué)通過計算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學(xué)的計算結(jié)果是正確的.(1)試判斷誰的計算結(jié)果正確?(2)若由線性回歸方程得到的估計數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過,則稱該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機抽取個,求“理想數(shù)據(jù)”的個數(shù)為的概率.21.(12分)已知矩陣,二階矩陣滿足.(1)求矩陣;(2)求矩陣的特征值.22.(10分)橢圓:的左、右焦點分別是,,離心率為,左、右頂點分別為,.過且垂直于軸的直線被橢圓截得的線段長為1.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)經(jīng)過點的直線與橢圓相交于不同的兩點、(不與點、重合),直線與直線相交于點,求證:、、三點共線.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

直接根據(jù)余弦定理求解即可.【詳解】解:∵,∴,∴,故選:D.【點睛】本題主要考查余弦定理解三角形,屬于基礎(chǔ)題.2、A【解析】

將正四面體補成正方體,通過正方體的對角線與球的半徑關(guān)系,求解即可.【詳解】解:如圖,將正四面體補形成一個正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設(shè)球的半徑為,則,解得,所以,故選:A.【點睛】本題主要考查多面體外接球問題,解決本題的關(guān)鍵在于,巧妙構(gòu)造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉(zhuǎn)化,屬于中檔題.3、D【解析】

首先將轉(zhuǎn)化為,只需求出的取值范圍即可,而表示可行域內(nèi)的點與圓心距離,數(shù)形結(jié)合即可得到答案.【詳解】作出可行域如圖所示設(shè)圓心為,則,過作直線的垂線,垂足為B,顯然,又易得,所以,,故.故選:D.【點睛】本題考查與線性規(guī)劃相關(guān)的取值范圍問題,涉及到向量的線性運算、數(shù)量積、點到直線的距離等知識,考查學(xué)生轉(zhuǎn)化與劃歸的思想,是一道中檔題.4、C【解析】

需結(jié)合拋物線第一定義和圖形,得為等腰三角形,設(shè)準(zhǔn)線與軸的交點為,過點作,再由三角函數(shù)定義和幾何關(guān)系分別表示轉(zhuǎn)化出,,結(jié)合比值與正切二倍角公式化簡即可【詳解】如圖,設(shè)準(zhǔn)線與軸的交點為,過點作.由拋物線定義知,所以,,,,所以.故選:C【點睛】本題考查拋物線的幾何性質(zhì),三角函數(shù)的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于中檔題5、D【解析】試題分析:因為,所以為得到y(tǒng)=sin(2x-π3)的圖象,只需要將考點:三角函數(shù)的圖像變換.6、A【解析】分析:首先需要去分析交換后甲盒中的紅球的個數(shù),對應(yīng)的事件有哪些結(jié)果,從而得到對應(yīng)的概率的大小,再者就是對隨機變量的值要分清,對應(yīng)的概率要算對,利用公式求得其期望.詳解:根據(jù)題意有,如果交換一個球,有交換的都是紅球、交換的都是藍球、甲盒的紅球換的乙盒的藍球、甲盒的藍球交換的乙盒的紅球,紅球的個數(shù)就會出現(xiàn)三種情況;如果交換的是兩個球,有紅球換紅球、藍球換藍球、一藍一紅換一藍一紅、紅換藍、藍換紅、一藍一紅換兩紅、一藍一紅換亮藍,對應(yīng)的紅球的個數(shù)就是五種情況,所以分析可以求得,故選A.點睛:該題考查的是有關(guān)隨機事件的概率以及對應(yīng)的期望的問題,在解題的過程中,需要對其對應(yīng)的事件弄明白,對應(yīng)的概率會算,以及變量的可取值會分析是多少,利用期望公式求得結(jié)果.7、B【解析】

根據(jù)散點圖呈現(xiàn)的特點可以看出,二者具有相關(guān)關(guān)系,且斜率小于1.【詳解】散點圖里變量的對應(yīng)點分布在一條直線附近,且比較密集,故可判斷語文成績和英語成績之間具有較強的線性相關(guān)關(guān)系,且直線斜率小于1,故選B.【點睛】本題主要考查散點圖的理解,側(cè)重考查讀圖識圖能力和邏輯推理的核心素養(yǎng).8、C【解析】

畫出圖形,以為基底將向量進行分解后可得結(jié)果.【詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.【點睛】應(yīng)用平面向量基本定理應(yīng)注意的問題(1)只要兩個向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時,合理選擇基底會給解題帶來方便.(2)利用已知向量表示未知向量,實質(zhì)就是利用平行四邊形法則或三角形法則進行向量的加減運算或數(shù)乘運算.9、A【解析】

利用統(tǒng)計圖結(jié)合分層抽樣性質(zhì)能求出樣本容量,利用條形圖能求出抽取的戶主對四居室滿意的人數(shù).【詳解】樣本容量為:(150+250+400)×30%=240,∴抽取的戶主對四居室滿意的人數(shù)為:故選A.【點睛】本題考查樣本容量和抽取的戶主對四居室滿意的人數(shù)的求法,是基礎(chǔ)題,解題時要認真審題,注意統(tǒng)計圖的性質(zhì)的合理運用.10、C【解析】

利用分布列求出,求出期望,再利用期望的性質(zhì)可求得結(jié)果.【詳解】由分布列的性質(zhì)可得,得,所以,,因此,.故選:C.【點睛】本題考查離散型隨機變量的分布列以及期望的求法,是基本知識的考查.11、C【解析】

由已知求出等比數(shù)列的公比,進而求出,嘗試用基本不等式,但取不到等號,所以考慮直接取的值代入比較即可.【詳解】,,或(舍).,,.當(dāng),時;當(dāng),時;當(dāng),時,,所以最小值為.故選:C.【點睛】本題考查等比數(shù)列通項公式基本量的計算及最小值,屬于基礎(chǔ)題.12、B【解析】

由平行求出參數(shù),再由數(shù)量積的坐標(biāo)運算計算.【詳解】由,得,則,,,所以.故選:B.【點睛】本題考查向量平行的坐標(biāo)表示,考查數(shù)量積的坐標(biāo)運算,掌握向量數(shù)量積的坐標(biāo)運算是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

過點做,可得,,由可得,可得,代入可得答案.【詳解】解:如圖,過點做,易得:,,,故,可得:,同理:,,可得,,由,可得,可得:,可得:,,故答案為:.【點睛】本題主要考查平面向量的線性運算和平面向量的數(shù)量積,由題意作出是解題的關(guān)鍵.14、10【解析】

畫出可行域,根據(jù)目標(biāo)函數(shù)截距可求.【詳解】解:作出可行域如下:由得,平移直線,當(dāng)經(jīng)過點時,截距最小,最大解得的最大值為10故答案為:10【點睛】考查可行域的畫法及目標(biāo)函數(shù)最大值的求法,基礎(chǔ)題.15、x﹣y=0.【解析】

先將x=1代入函數(shù)式求出切點縱坐標(biāo),然后對函數(shù)求導(dǎo)數(shù),進一步求出切線斜率,最后利用點斜式寫出切線方程.【詳解】由題意得.故切線方程為y﹣1=x﹣1,即x﹣y=0.故答案為:x﹣y=0.【點睛】本題考查利用導(dǎo)數(shù)求切線方程的基本方法,利用切點滿足的條件列方程(組)是關(guān)鍵.同時也考查了學(xué)生的運算能力,屬于基礎(chǔ)題.16、【解析】

依題意易得A、B、C、D四點共圓且圓心在x軸上,然后設(shè)出圓心,由圓的方程與橢圓方程聯(lián)立得到B的橫坐標(biāo),進一步得到D橫坐標(biāo),再由計算比值即可.【詳解】因為,所以A、B、C、D四點共圓,直徑為,又A、C關(guān)于x軸對稱,所以圓心E在x軸上,設(shè)圓心E為,則圓的方程為,聯(lián)立橢圓方程消y得,解得,故B的橫坐標(biāo)為,又B、D中點是E,所以D的橫坐標(biāo)為,故.故答案為:.【點睛】本題考查橢圓中的四點共圓及三角形面積之比的問題,考查學(xué)生基本計算能力及轉(zhuǎn)化與化歸思想,本題關(guān)鍵是求出B、D橫坐標(biāo),是一道有區(qū)分度的壓軸填空題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)首先由線面平行的判定定理可得平面,再由線面平行的性質(zhì)定理即可得證;(2)以點為坐標(biāo)原點,,所在的直線分別為軸,以過點且垂直于的直線為軸建立空間直角坐標(biāo)系,利用空間向量法求出二面角的余弦值;【詳解】解:(1)由,又平面,平面,所以平面.又平面,且平面平面,故.(2)因為平面,所以,又,所以平面,所以,又,所以.若平面平面,則平面,所以,由且,又,所以.以點為坐標(biāo)原點,,所在的直線分別為軸,以過點且垂直于的直線為軸建立空間直角坐標(biāo)系,則,,設(shè)則由,可得,,即,所以可得,所以,設(shè)平面的一個法向量為,則,,,取,得所以易知平面的法向量為,設(shè)平面與平面所成的二面角為,則,結(jié)合圖形可知平面與平面所成的二面角的余弦值為.【點睛】本題考查線面平行的判定定理及性質(zhì)定理的應(yīng)用,利用空間向量法求二面角,解題時要認真審題,注意空間思維能力的培養(yǎng),屬于中檔題.18、(1)見解析(2)見解析【解析】

(1)利用導(dǎo)函數(shù)的正負確定函數(shù)的增減.(2)函數(shù)在有兩個零點,即方程在區(qū)間有兩解,令通過二次求導(dǎo)確定函數(shù)單調(diào)性證明參數(shù)范圍.【詳解】解:(1)證明:因為,當(dāng)時,,,所以在區(qū)間遞減;當(dāng)時,,所以,所以在區(qū)間遞增;且,所以函數(shù)的極小值點為1(2)函數(shù)在有兩個零點,即方程在區(qū)間有兩解,令,則令,則,所以在單調(diào)遞增,又,故存在唯一的,使得,即,所以在單調(diào)遞減,在區(qū)間單調(diào)遞增,且,又因為,所以,方程關(guān)于的方程在有兩個零點,由的圖象可知,,即.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,確定函數(shù)的極值,利用二次求導(dǎo),零點存在性定理確定參數(shù)范圍,屬于難題.19、(1),;(2)證明見解析.【解析】

(1)根據(jù)題中條件求出等差數(shù)列的首項和公差,然后根據(jù)首項和公差即可求出數(shù)列的通項和前項和;(2)根據(jù)裂項求和求出,根據(jù)的表達式即可證明.【詳解】(1)設(shè)的公差為,由題意有,且,所以,;(2)因為,所以,.【點睛】本題主要考查了等差數(shù)列基本量的求解,裂項求和法,屬于基礎(chǔ)題.20、(1)乙同學(xué)正確;(2).【解析】

(1)根據(jù)變量且有線性負相關(guān)關(guān)系判斷甲不正確.根據(jù)回歸直線方程過樣本中心點,判斷出乙正確.(2)由線性回歸方程得到的估計數(shù)據(jù),計算出誤差,求得“理想數(shù)據(jù)”的個數(shù),由此利用古典概型概率計算公式,求得所求概率.【詳解】(1)已知變量具有線性負相關(guān)關(guān)系,故甲不正確,,代入兩個回歸方程,驗證乙同學(xué)正確,故回歸方程為:(2)由(1)得到的回歸方程,計算估計數(shù)據(jù)如下表:021212由上表可知,“理想數(shù)據(jù)”的個數(shù)為.用列舉法可知,從個不同數(shù)據(jù)里抽出個不同數(shù)據(jù)的方法有種.從符合條件的個不同數(shù)據(jù)中抽出個,還要在不符合條件的個不同數(shù)據(jù)中抽出個的方法有種.故所求概率為【點睛】本小題主要考查回歸直線方程的判斷,考查古典概型概率計算,考查數(shù)據(jù)處理能力,屬于中檔題.21、(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論