北京市西城區(qū)月壇中學2024屆高三第二次模擬考試數學試卷含解析_第1頁
北京市西城區(qū)月壇中學2024屆高三第二次模擬考試數學試卷含解析_第2頁
北京市西城區(qū)月壇中學2024屆高三第二次模擬考試數學試卷含解析_第3頁
北京市西城區(qū)月壇中學2024屆高三第二次模擬考試數學試卷含解析_第4頁
北京市西城區(qū)月壇中學2024屆高三第二次模擬考試數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京市西城區(qū)月壇中學2024屆高三第二次模擬考試數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線x2a2-y2b2=1(a>0,b>0),其右焦點F的坐標為(c,0),點A是第一象限內雙曲線漸近線上的一點,O為坐標原點,滿足|OA|=A.2 B.2 C.2332.已知整數滿足,記點的坐標為,則點滿足的概率為()A. B. C. D.3.設雙曲線(,)的一條漸近線與拋物線有且只有一個公共點,且橢圓的焦距為2,則雙曲線的標準方程為()A. B. C. D.4.已知函數是上的偶函數,是的奇函數,且,則的值為()A. B. C. D.5.已知拋物線:()的焦點為,為該拋物線上一點,以為圓心的圓與的準線相切于點,,則拋物線方程為()A. B. C. D.6.在中,,分別為,的中點,為上的任一點,實數,滿足,設、、、的面積分別為、、、,記(),則取到最大值時,的值為()A.-1 B.1 C. D.7.給出下列三個命題:①“”的否定;②在中,“”是“”的充要條件;③將函數的圖象向左平移個單位長度,得到函數的圖象.其中假命題的個數是()A.0 B.1 C.2 D.38.在中,角的對邊分別為,若.則角的大小為()A. B. C. D.9.若時,,則的取值范圍為()A. B. C. D.10.要得到函數的圖象,只需將函數的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位11.已知集合,則=()A. B. C. D.12.已知集合,集合,則A. B.或C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數列為等比數列,,則_____.14.執(zhí)行右邊的程序框圖,輸出的的值為.15.已知,,,,則______.16.已知直線被圓截得的弦長為2,則的值為__三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知中,角,,的對邊分別為,,,已知向量,且.(1)求角的大??;(2)若的面積為,,求.18.(12分)已知函數(1)若函數有且只有一個零點,求實數的取值范圍;(2)若函數對恒成立,求實數的取值范圍.19.(12分)已知橢圓的離心率為,且過點,點在第一象限,為左頂點,為下頂點,交軸于點,交軸于點.(1)求橢圓的標準方程;(2)若,求點的坐標.20.(12分)已知,.(1)解不等式;(2)若方程有三個解,求實數的取值范圍.21.(12分)已知橢圓C:()的左、右焦點分別為,,離心率為,且過點.(1)求橢圓C的方程;(2)過左焦點的直線l與橢圓C交于不同的A,B兩點,若,求直線l的斜率k.22.(10分)某網絡商城在年月日開展“慶元旦”活動,當天各店鋪銷售額破十億,為了提高各店鋪銷售的積極性,采用搖號抽獎的方式,抽取了家店鋪進行紅包獎勵.如圖是抽取的家店鋪元旦當天的銷售額(單位:千元)的頻率分布直方圖.(1)求抽取的這家店鋪,元旦當天銷售額的平均值;(2)估計抽取的家店鋪中元旦當天銷售額不低于元的有多少家;(3)為了了解抽取的各店鋪的銷售方案,銷售額在和的店鋪中共抽取兩家店鋪進行銷售研究,求抽取的店鋪銷售額在中的個數的分布列和數學期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

計算得到Ac,bca【詳解】雙曲線的一條漸近線方程為y=bax,A故Ac,bca,Fc,0,故Mc,故選:C.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.2、D【解析】

列出所有圓內的整數點共有37個,滿足條件的有7個,相除得到概率.【詳解】因為是整數,所以所有滿足條件的點是位于圓(含邊界)內的整數點,滿足條件的整數點有共37個,滿足的整數點有7個,則所求概率為.故選:.【點睛】本題考查了古典概率的計算,意在考查學生的應用能力.3、B【解析】

設雙曲線的漸近線方程為,與拋物線方程聯立,利用,求出的值,得到的值,求出關系,進而判斷大小,結合橢圓的焦距為2,即可求出結論.【詳解】設雙曲線的漸近線方程為,代入拋物線方程得,依題意,,橢圓的焦距,,雙曲線的標準方程為.故選:B.【點睛】本題考查橢圓和雙曲線的標準方程、雙曲線的簡單幾何性質,要注意雙曲線焦點位置,屬于中檔題.4、B【解析】

根據函數的奇偶性及題設中關于與關系,轉換成關于的關系式,通過變形求解出的周期,進而算出.【詳解】為上的奇函數,,而函數是上的偶函數,,,故為周期函數,且周期為故選:B【點睛】本題主要考查了函數的奇偶性,函數的周期性的應用,屬于基礎題.5、C【解析】

根據拋物線方程求得點的坐標,根據軸、列方程,解方程求得的值.【詳解】不妨設在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準線相切于點,根據拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數形結合的數學思想方法,屬于中檔題.6、D【解析】

根據三角形中位線的性質,可得到的距離等于△的邊上高的一半,從而得到,由此結合基本不等式求最值,得到當取到最大值時,為的中點,再由平行四邊形法則得出,根據平面向量基本定理可求得,從而可求得結果.【詳解】如圖所示:因為是△的中位線,所以到的距離等于△的邊上高的一半,所以,由此可得,當且僅當時,即為的中點時,等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據平面向量基本定理可得,從而.故選:D【點睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應用,考查了基本不等式求最值,屬于中檔題.7、C【解析】

結合不等式、三角函數的性質,對三個命題逐個分析并判斷其真假,即可選出答案.【詳解】對于命題①,因為,所以“”是真命題,故其否定是假命題,即①是假命題;對于命題②,充分性:中,若,則,由余弦函數的單調性可知,,即,即可得到,即充分性成立;必要性:中,,若,結合余弦函數的單調性可知,,即,可得到,即必要性成立.故命題②正確;對于命題③,將函數的圖象向左平移個單位長度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點睛】本題考查了命題真假的判斷,考查了余弦函數單調性的應用,考查了三角函數圖象的平移變換,考查了學生的邏輯推理能力,屬于基礎題.8、A【解析】

由正弦定理化簡已知等式可得,結合,可得,結合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【點睛】本題主要考查了正弦定理在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.9、D【解析】

由題得對恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對恒成立,令,在單調遞減,且,在上單調遞增,在上單調遞減,,又在單調遞增,,的取值范圍為.故選:D【點睛】本題主要考查了不等式恒成立問題,導數的綜合應用,考查了轉化與化歸的思想.求解不等式恒成立問題,可采用參變量分離法去求解.10、D【解析】

直接根據三角函數的圖象平移規(guī)則得出正確的結論即可;【詳解】解:函數,要得到函數的圖象,只需將函數的圖象向左平移個單位.故選:D.【點睛】本題考查三角函數圖象平移的應用問題,屬于基礎題.11、D【解析】

先求出集合A,B,再求集合B的補集,然后求【詳解】,所以.故選:D【點睛】此題考查的是集合的并集、補集運算,屬于基礎題.12、C【解析】

由可得,解得或,所以或,又,所以,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、81【解析】

設數列的公比為,利用等比數列通項公式求出,代入等比數列通項公式即可求解.【詳解】設數列的公比為,由題意知,因為,由等比數列通項公式可得,,解得,由等比數列通項公式可得,.故答案為:【點睛】本題考查等比數列通項公式;考查運算求解能力;屬于基礎題.14、【解析】初始條件成立方;運行第一次:成立;運行第二次:不成立;輸出的值:結束所以答案應填:考點:1、程序框圖;2、定積分.15、【解析】

由已知利用同角三角函數的基本關系式可求得,的值,由兩角差的正弦公式即可計算得的值.【詳解】,,,,,,,,.故答案為:【點睛】本題主要考查了同角三角函數的基本關系、兩角差的正弦公式,需熟記公式,屬于基礎題.16、1【解析】

根據弦長為半徑的兩倍,得直線經過圓心,將圓心坐標代入直線方程可解得.【詳解】解:圓的圓心為(1,1),半徑,

因為直線被圓截得的弦長為2,

所以直線經過圓心(1,1),

,解得.故答案為:1.【點睛】本題考查了直線與圓相交的性質,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】試題分析:(1)利用已知及平面向量數量積運算可得,利用正弦定理可得,結合,可求,從而可求的值;(2)由三角形的面積可解得,利用余弦定理可得,故可得.試題解析:(1)∵,,,∴,∴,即,又∵,∴,又∵,∴.(2)∵,∴,又,即,∴,故.18、(1);(2).【解析】

(1)求導得到,討論和兩種情況,計算函數的單調性,得到,再討論,,三種情況,計算得到答案.(2)計算得到,討論,兩種情況,分別計算單調性得到函數最值,得到答案.【詳解】(1),①當時恒成立,所以單調遞增,因為,所以有唯一零點,即符合題意;②當時,令,函數在上單調遞減,在上單調遞增,函數。(i)當即,所以符合題意,(ii)當即時,因為,故存在,所以不符題意(iii)當時,因為,設,所以,單調遞增,即,故存在,使得,不符題意;綜上,的取值范圍為。(2)。①當時,恒成立,所以單調遞增,所以,即符合題意;②當時,恒成立,所以單調遞增,又因為,所以存在,使得,且當時,。即在上單調遞減,所以,不符題意。綜上,的取值范圍為.【點睛】本題考查了函數的零點問題,恒成立問題,意在考查學生的分類討論能力和綜合應用能力.19、(1);(2)【解析】

(1)由題意得,求出,進而可得到橢圓的方程;(2)由(1)知點,坐標,設直線的方程為,易知,可得點的坐標為,聯立方程,得到關于的一元二次方程,結合根與系數關系,可用表示的坐標,進而由三點共線,即,可用表示的坐標,再結合,可建立方程,從而求出的值,即可求得點的坐標.【詳解】(1)由題意得,解得,所以橢圓的方程為.(2)由(1)知點,,由題意可設直線的斜率為,則,所以直線的方程為,則點的坐標為,聯立方程,消去得:.設,則,所以,所以,所以.設點的坐標為,因為點三點共線,所以,即,所以,所以.因為,所以,即,所以,解得,又,所以符合題意,計算可得,,故點的坐標為.【點睛】本題考查橢圓方程的求法,考查直線與橢圓位置關系的應用,考查平行線的性質,考查學生的計算求解能力,屬于難題.20、(1);(2).【解析】

(1)對分三種情況討論,分別去掉絕對值符號,然后求解不等式組,再求并集即可得結果;(2).作出函數的圖象,當直線與函數的圖象有三個公共點時,方程有三個解,由圖可得結果.【詳解】(1)不等式,即為.當時,即化為,得,此時不等式的解集為,當時,即化為,解得,此時不等式的解集為.綜上,不等式的解集為.(2)即.作出函數的圖象如圖所示,當直線與函數的圖象有三個公共點時,方程有三個解,所以.所以實數的取值范圍是.【點睛】絕對值不等式的解法:法一:利用絕對值不等式的幾何意義求解,體現了數形結合的思想;法二:利用“零點分段法”求解,體現了分類討論的思想;法三:通過構造函數,利用函數的圖象求解,體現了函數與方程的思想.21、(1)(2)直線l的斜率為或【解析】

(1)根據已知列出方程組即可解得橢圓方程;(2)設直線方程,與橢圓方程聯立,轉化為,借助向量的數量積的坐標表示,及韋達定理即可求得結果.【詳解】(1)由題意得解得故橢圓C的方程為.(2)直線l的方程為,設,,則由方程組消去y得,,所以,,由,得,所以,又所以,即所以,因此,直線l的斜率為或.【點睛】本題考查橢圓的標準方程,考查直線和橢圓的位置關系,考查學生的計算求解能力,難度一般

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論