




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆福建省龍巖市龍巖初級中學數(shù)學八下期末統(tǒng)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.要使分式有意義,則x應滿足的條件是()A.x≠1 B.x≠1或x≠0 C.x≠0 D.x>12.課間,小聰拿著老師的等腰直角三角板玩,不小心掉到兩墻之間(如圖),已知,∠ACB=90°,AC=BC,AB=1.如果每塊磚的厚度相等,磚縫厚度忽略不計,那么砌墻磚塊的厚度為()A. B. C. D.53.向最大容量為60升的熱水器內(nèi)注水,每分鐘注水10升,注水2分鐘后停止1分鐘,然后繼續(xù)注水,直至注滿.則能反映注水量與注水時間函數(shù)關(guān)系的圖象是()A. B.C. D.4.已知關(guān)于x的不等式組的整數(shù)解共有2個,則整數(shù)a的取值是()A.﹣2 B.﹣1 C.0 D.15.如圖,過對角線的交點,交于,交于,若的周長為36,,則四邊形的周長為()A.24 B.26 C.28 D.206.如圖①,四邊形ABCD中,BC∥AD,∠A=90°,點P從A點出發(fā),沿折線AB→BC→CD運動,到點D時停止,已知△PAD的面積s與點P運動的路程x的函數(shù)圖象如圖②所示,則點P從開始到停止運動的總路程為()A.4 B.9 C.10 D.4+7.已知關(guān)于的方程是一元二次方程,則的取值范圍是()A. B. C. D.任意實數(shù)8.下列各式中正確的是()A. B. C.=a+b D.=-a-b9.給出下列命題:(1)平行四邊形的對角線互相平分;(2)矩形的對角線相等;(3)菱形的對角線互相垂直平分;(4)正方形的對角線相等且互相垂直平分.其中,真命題的個數(shù)是()A.2 B.3 C.4 D.110.一次函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點B(﹣6,0),且與正比例函數(shù)y=x的圖象交于點A(m,﹣3),若kx﹣x>﹣b,則()A.x>0 B.x>﹣3 C.x>﹣6 D.x>﹣911.如圖,點B、F、C、E在一條直線上,AB∥ED,AC∥FD,那么添加下列一個條件后,仍無法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC12.一個正多邊形的每一個外角的度數(shù)都是60°,則這個多邊形的邊數(shù)是:()A.8 B.7 C.6 D.5二、填空題(每題4分,共24分)13.若直線y=ax+7經(jīng)過一次函數(shù)y=4﹣3x和y=2x﹣1的交點,則a的值是_____.14.如圖,平行四邊形ABCD中,∠B=60°,AB=8cm,AD=10cm,點P在邊BC上從B向C運動,點Q在邊DA上從D向A運動,如果P,Q運動的速度都為每秒1cm,那么當運動時間t=_____秒時,四邊形ABPQ是直角梯形.15.如圖,與穿過正六邊形,且,則的度數(shù)為______.16.點D、E、F分別是△ABC三邊的中點,若△ABC的周長是16,則△DEF的周長是_____.17.若函數(shù)y=(m+1)x+(m2-1)(m為常數(shù))是正比例函數(shù),則m的值是____________。18.正方形的邊長為2,點是對角線上一點,和是直角三角形.則______.三、解答題(共78分)19.(8分)為發(fā)展旅游經(jīng)濟,我市某景區(qū)對門票釆用靈活的售票方法吸引游客.門票定價為50元/人,非節(jié)假日打折售票,節(jié)假日按團隊人數(shù)分段定價售票,即人以下(含人)的團隊按原價售票;超過人的團隊,其中人仍按原價售票,超過人部分的游客打折售票.設(shè)某旅游團人數(shù)為人,非節(jié)假日購票款為(元),節(jié)假日購票款為(元).與之間的函數(shù)圖象如圖所示.(1)觀察圖象可知:;;;(2)直接寫出,與之間的函數(shù)關(guān)系式;(3)某旅行社導游王娜于5月1日帶團,5月20日(非節(jié)假日)帶團都到該景區(qū)旅游,共付門票款1900元,,兩個團隊合計50人,求,兩個團隊各有多少人?20.(8分)在平行四邊形中,的垂直平分線分別交于兩點,交于點,試判斷四邊形的形狀,并說明理由.21.(8分)已知:如圖,在四邊形中,過作交于點,過作交于,且.求證:四邊形是平行四邊形.22.(10分)如圖,在□ABCD中,點E、F在對角線BD上,且BE=DF,(1)求證:AE=CF;(2)求證:四邊形AECF是平行四邊形.23.(10分)如圖,在矩形ABCD中,AB=8,BC=6,點P、點E分別是邊AB、BC上的動點,連結(jié)DP、PE.將
△ADP
與
△BPE分別沿DP與PE折疊,點A與點B分別落在點A′,B′處.(1)當點P運動到邊AB的中點處時,點A′與點B′重合于點F處,過點C作CK⊥EF于K,求CK的長;(2)當點P運動到某一時刻,若P,A',B'三點恰好在同一直線上,且A'B'=4,試求此時AP的長.24.(10分)某花卉種植基地準備圍建一個面積為100平方米的矩形苗圃園園種植玫瑰花,其中一邊靠墻,另外三邊用29米長的籬笆圍成.已知墻長為18米,為方便進入,在墻的對面留出1米寬的門(如圖所示),求這個苗圃園垂直于墻的一邊長為多少米?25.(12分)分解因式:(1).(2).26.如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點.(1)求證:△ACE≌△BCD;(2)若AD=5,BD=12,求DE的長.
參考答案一、選擇題(每題4分,共48分)1、A【解題分析】
根據(jù)分式有意義的條件:分母≠0,即可得出結(jié)論.【題目詳解】解:由分式有意義,得x-1≠0,解得x≠1.故選:A.【題目點撥】此題考查的是分式有意義的條件,掌握分式有意義的條件:分母≠0是解決此題的關(guān)鍵.2、A【解題分析】
根據(jù)全等三角形的判定定理證明△ACD≌△CEB,進而利用勾股定理,在Rt△AFB中,AF2+BF2=AB2,求出即可【題目詳解】過點B作BF⊥AD于點F,設(shè)砌墻磚塊的厚度為xcm,則BE=2xcm,則AD=3xcm,∵∠ACB=90,∴∠ACD+∠ECB=90,∵∠ECB+∠CBE=90,∴∠ACD=∠CBE,在△ACD和△CEB中,,∴△ACD≌△CEB(AAS),∴AD=CE,CD=BE,∴DE=5x,AF=AD?BE=x,∴在Rt△AFB中,AF2+BF2=AB2,∴25x2+x2=12,解得,x=(負值舍去)故選A.【題目點撥】本題考查的是勾股定理的應用以及全等三角形的判定與性質(zhì),得出AD=BE,DC=CF是解題關(guān)鍵.3、D【解題分析】
注水需要60÷10=6分鐘,注水2分鐘后停止注水1分鐘,共經(jīng)歷6+1=7分鐘,排除A、B;再根據(jù)停1分鐘,再注水4分鐘,排除C.故選D.4、C【解題分析】分析:先用a表示出不等式組的整數(shù)解,再根據(jù)不等式組的整數(shù)解有2個可得出a的取值范圍.解:,由①得,x≥a,由②得,x≤1,故不等式組的解集為:a≤x≤1,∵不等式的整數(shù)解有2個,∴其整數(shù)解為:1,1,∵a為整數(shù),∴a=1.故選C.5、A【解題分析】
根據(jù)平行四邊形的性質(zhì)可求出AD+CD的值,易證△AOE≌△COF,所以AE=CF,OE=OF=3,根據(jù)CF+CD+ED+EF=AD+CD+EF即可求出答案.【題目詳解】在平行四邊形ABCD中,2(AB+BC)=36,∴AB+BC=18,∵四邊形ABCD是平行四邊形,∴OA=OC,AD∥BC∴∠AEF=∠CFE,在△AOE和△COF中∴△AOE≌△COF,∴AE=CF,OE=OF=3,∴EF=6∴AB+BF+FE+EA=AB+BF+CF+EF=AB+BC+EF=18+6=24故選:A.【題目點撥】本題考查平行四邊形的性質(zhì),解題的關(guān)鍵是熟練運用平行四邊形的性質(zhì),本題屬于中等題型.6、D【解題分析】
根據(jù)函數(shù)圖象可以直接得到AB、BC和三角形ADB的面積,從而可以求得AD的長,作輔助線AE⊥AD,從而可得CD的長,進而求得點P從開始到停止運動的總路程,本題得以解決.【題目詳解】作CE⊥AD于點E,如下圖所示,由圖象可知,點P從A到B運動的路程是2,當點P與點B重合時,△ADP的面積是5,由B到C運動的路程為2,∴=5,解得,AD=5,又∵BC∥AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四邊形ABCE是矩形,∴AE=BC=2,∴DE=AD?AE=5?2=3,∴CD==,∴點P從開始到停止運動的總路程為:AB+BC+CD=2+2+=4+,故選D.【題目點撥】此題考查動點問題的函數(shù)圖象,解題關(guān)鍵在于利用勾股定理進行計算7、A【解題分析】
利用一元二次方程的定義求解即可.【題目詳解】解:∵關(guān)于x的方程是一元二次方程,∴m+1≠0,即m≠?1,故選:A.【題目點撥】此題主要考查了一元二次方程的概念.只有一個未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特別要注意a≠0的條件.這是在做題過程中容易忽視的知識點.8、D【解題分析】
根據(jù)分式的性質(zhì):分子分母同時擴大或縮小相同倍數(shù),值不變,和分式的通分即可解題.【題目詳解】A.,故A錯誤,B.,故B錯誤C.a+b,這里面分子不能用平方差因式分解,D.=-a-b,正確故選D.【題目點撥】本題考查了分式的運算性質(zhì),屬于簡單題,熟悉概念是解題關(guān)鍵.9、C【解題分析】
利用平行四邊形的性質(zhì)、矩形的性質(zhì)、菱形的性質(zhì)及正方形的性質(zhì)分別判斷后即可確定正確的選項.【題目詳解】(1)平行四邊形的對角線互相平分,正確,是真命題;(2)矩形的對角線相等,正確,是真命題;(3)菱形的對角線互相垂直平分,正確,是真命題;(4)正方形的對角線相等且互相垂直平分,正確,是真命題,故選C.【題目點撥】本題考查了命題與定理的知識,解題的關(guān)鍵是了解平行四邊形的性質(zhì)、矩形的性質(zhì)、菱形的性質(zhì)及正方形的性質(zhì),屬于基礎(chǔ)題,難度不大.10、D【解題分析】
先利用正比例函數(shù)解析式,確定A點坐標;然后利用函數(shù)圖像,寫出一次函數(shù)y=kx+b(k≠0)的圖像,在正比例函數(shù)圖像上方所對應的自變量的范圍.【題目詳解】解:把A(m,﹣3)代入y=x得m=﹣3,解得m=﹣1,所以當x>﹣1時,kx+b>x,即kx﹣x>﹣b的解集為x>﹣1.故選:D.【題目點撥】本題考查了一次函數(shù)與一元一次不等式:從函數(shù)的角度看,就是尋求使一次函數(shù)y=kx+b的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖像的角度看,就是確定直線y=kx+b在x軸上(或下)方部分所有的點的橫坐標所構(gòu)成的集合.11、C【解題分析】試題分析:解:選項A、添加AB=DE可用AAS進行判定,故本選項錯誤;選項B、添加AC=DF可用AAS進行判定,故本選項錯誤;選項C、添加∠A=∠D不能判定△ABC≌△DEF,故本選項正確;選項D、添加BF=EC可得出BC=EF,然后可用ASA進行判定,故本選項錯誤.故選C.考點:全等三角形的判定.12、C【解題分析】分析:正多邊形的外角計算公式為:,根據(jù)公式即可得出答案.詳解:根據(jù)題意可得:n=360°÷60°=6,故選C.點睛:本題主要考查的是正多邊形的外角計算公式,屬于基礎(chǔ)題型.明確公式是解決這個問題的關(guān)鍵.二、填空題(每題4分,共24分)13、-2【解題分析】根據(jù)題意,得4﹣3x=2x﹣1,解得x=1,∴y=1.把(1,1)代入y=ax+7,得a+7=1,解得a=﹣2.故答案為﹣2.14、1【解題分析】
過點A作AE⊥BC于E,因為AD∥BC,所以當AE∥QP時,則四邊形ABPQ是直角梯形,利用已知條件和路程與速度的關(guān)系式即可求出時間t的值【題目詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,過點A作AE⊥BC于E,∴當AE∥QP時,則四邊形ABPQ是直角梯形,∵∠B=60°,AB=8cm,∴BE=4cm,∵P,Q運動的速度都為每秒1cm,∴AQ=10﹣t,AP=t,∵BE=4,∴EP=t﹣4,∵AE⊥BC,AQ∥EP,AE∥QP,∴QP⊥BC,AQ⊥AD,∴四邊形AEPQ是矩形,∴AQ=EP,即10﹣t=t﹣4,解得t=1,故答案為:1.【題目點撥】此題考查直角梯形,平行四邊形的性質(zhì),解題關(guān)鍵在于作輔助線15、【解題分析】
根據(jù)多邊形的內(nèi)角和公式,求出每個內(nèi)角的度數(shù),延長EF交直線l1
于點M,利用平行線的性質(zhì)把∠1搬到∠3處,利用三角形的外角計算出結(jié)果【題目詳解】延長EF交直線l1于點M,如圖所示∵ABCDEF是正六邊形∴∠AFE=∠A=120°∴∠MFA=60°∵11∥12∴∠1=∠3∵∠3=∠2+∠MFA∴∠1﹣∠2=∠MFA=60°故答案為:60°【題目點撥】此題主要考查了平行線的性質(zhì),關(guān)鍵是掌握兩直線平行、內(nèi)錯角相等,同旁內(nèi)角互補.16、1.【解題分析】
據(jù)D、E、F分別是AB、AC、BC的中點,可以判斷DF、FE、DE為三角形中位線,利用中位線定理求出DF、FE、DE與AB、BC、CA的長度關(guān)系即可解答.【題目詳解】如圖,∵D、E、F分別是AB、BC、AC的中點,∴ED、FE、DF為△ABC中位線,∴DFBC,F(xiàn)EAB,DEAC,∴DF+FE+DEBCABAC(AB+BC+CA)16=1.故答案為:1.【題目點撥】本題考查了三角形的中位線定理,根據(jù)中點判斷出中位線,再利用中位線定理是解題的基本思路.17、2【解題分析】
根據(jù)正比例函數(shù)的定義列出方程m2-2=2且m+2≠2,依此求得m值即可.【題目詳解】解:依題意得:m2-2=2且m+2≠2.解得m=2,故答案是:2.【題目點撥】本題考查了正比例函數(shù)的定義.解題關(guān)鍵是掌握正比例函數(shù)的定義條件:正比例函數(shù)y=kx的定義條件是:k為常數(shù)且k≠2,自變量次數(shù)為2.18、或.【解題分析】
根據(jù)勾股定理得到BD=AC=,根據(jù)已知條件得到當點E是對角線的交點時,△EAD、△ECD是等腰直角三角形,求得DE=BD=,當點E與點B重合時,△EAD、△ECD是等腰直角三角形,得到DE=BD=.【題目詳解】解:∵正方形ABCD的邊長為2,∴BD=AC=,∵點E是對角線BD上一點,△EAD、△ECD是直角三角形,∴當點E是對角線的交點時,△EAD、△ECD是等腰直角三角形,∴DE=BD=,當點E與點B重合時,△EAD、△ECD是等腰直角三角形,∴DE=BD=,故答案為:或.【題目點撥】本題考查了正方形的性質(zhì),等腰直角三角形的判定和性質(zhì),分類討論是解題的關(guān)鍵.三、解答題(共78分)19、(1),,;(2),;(3)團有40人,團有10人【解題分析】
(1)根據(jù)函數(shù)圖象,用購票款數(shù)除以定價的款數(shù),計算即可求出a的值;用第11人到20人的購票款數(shù)除以定價的款數(shù),計算即可求出b的值,由圖可求m的值;(2)利用待定系數(shù)法求正比例函數(shù)解析式求出y1,分x≤10與x>10,利用待定系數(shù)法求一次函數(shù)解析式求出y2與x的函數(shù)關(guān)系式即可;(3)設(shè)A團有n人,表示出B團的人數(shù)為(50-n),然后分0≤n≤10與n>10兩種情況,根據(jù)(2)的函數(shù)關(guān)系式列出方程求解即可.【題目詳解】解:(1)在非節(jié)假日,人數(shù)為10人時,總票價為300,所以人均票價為300÷10=30,因為30÷50=0.6,所以打了6折,a=6.在節(jié)假日,如圖x=10時,票價開始發(fā)生變化,所以m=10,人數(shù)從10人增加到20人,總票價增加了400元,所以此時人均票價為400÷10=40,因為40÷50=0.8,所以打了八折,b=8.故,,,(2)在非節(jié)假日,設(shè),將(10,300)代入,可得,解得k1=30,故.在節(jié)假日,當時,,當時,設(shè)將(10,500),(20,900)代入,可得,解得,故所以.(3)設(shè)團有n人,團有人,則當時,根據(jù)題意解得:,∴不合要求.當時,根據(jù)題意解得:,∴∴團有40人,團有10人.【題目點撥】本題考查一次函數(shù)的應用,(1)結(jié)合圖象,理解圖象上的點代表的意義是解決本題的關(guān)鍵;(2)y1為正比例函數(shù),在圖象上找一點代入一般式即可,y2為分段函數(shù),第一段為正比例函數(shù),第二段為一次函數(shù),找到相應的點代入一般式即可求出解析式;(3)設(shè)A團有n人,利用方程思想,列出表達式求解即可.20、四邊形是菱形,理由見解析?!窘忸}分析】
根據(jù)題意先證明四邊形是平行四邊形,再根據(jù)垂直平分線的性質(zhì)即可求解.【題目詳解】解:四邊形是菱形,理由如下:四邊形是平行四邊形又垂直平分在和中四邊形是平行四邊形又四邊形是菱形【題目點撥】此題主要考查菱形的判定,解題的關(guān)鍵是熟知全等三角形的判定與性質(zhì)及菱形的判定定理.21、證明見解析.【解題分析】
根據(jù)HL證明,從而得到,再根據(jù)平等線的判斷得到,從而得到結(jié)論.【題目詳解】∵,,∴,在和中,∴∴,∴,∵,∴四邊形是平行四邊形.【題目點撥】考查了平行四邊形的判斷,解題關(guān)鍵是證明得到,從而證明.22、(1)證明見試題解析;(2)證明見試題解析.【解題分析】
(1)根據(jù)平行四邊形的性質(zhì)可得AB=CD,AB∥CD,然后可證明∠ABE=∠CDF,再利用SAS來判定△ABE≌△DCF,從而得出AE=CF.(2)首先根據(jù)全等三角形的性質(zhì)可得∠AEB=∠CFD,根據(jù)等角的補角相等可得∠AEF=∠CFE,然后證明AE∥CF,從而可得四邊形AECF是平行四邊形.【題目詳解】(1)∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD.∴∠ABE=∠CDF.在△ABE和△CDF中,,∴△ABE≌△DCF(SAS).∴AE=CF.(2)∵△ABE≌△DCF,∴∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,∵AE=CF,∴四邊形AECF是平行四邊形.23、(1);(2),PA的長為2或1.【解題分析】
(1)由折疊的性質(zhì)可得E,F,D三點在同一直線上,在Rt△DEC中,根據(jù)勾股定理可求出BE,CE,DE的長,再根據(jù)面積法即可求出CK的值;(2)分兩種情況進行討論:根據(jù)A′B′=4列出方程求解即可.【題目詳解】⑴如圖,∵四邊形ABCD為矩形,將
△ADP
與
△BPE分別沿DP與PE折疊,∴∠PFD=∠PFE=90°,
∴∠PFD+∠PFE=180°,即:E,F,D三點在同一直線上.設(shè)BE=EF=x,則EC=1-x,
∵DC=AB=8,DF=AD=1,在Rt△DEC中,∵DE=DF+FE=1+x,EC=1-x,DC=8,∴(1+x)2=(1-x)2+82,計算得出x=,即BE=EF=,∴DE=,EC=,∵S△DCE=DC?CE=DECK,∴CK=;⑵①如圖2中,設(shè)AP=x,則PB=8-x,由折疊可知:PA′=PA=x,PB′=PB=8-x,∵A′B′=4,∴8-x-x=4,
∴x=2,即AP=2.②如圖3中,∵A′B′=4,∴x-(8-x)=4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 徽縣特崗面試真題及答案
- 黃石教資面試真題及答案
- 榆次二模試題及答案英語
- 家具行業(yè)的市場營銷對產(chǎn)品設(shè)計的指導作用研究試題及答案
- 新能源汽車技術(shù)的質(zhì)量保障體系試題及答案
- 砂輪機安全試題及答案
- 粗苯工藝培訓試題及答案
- 家具行業(yè)的人才需求與培養(yǎng)問題試題及答案
- 民辦教育機構(gòu)2025年合規(guī)運營風險防范與品牌影響力提升分析
- 醫(yī)藥企業(yè)研發(fā)外包(CRO)模式在2025年的國際合作與本土化發(fā)展報告
- 全球汽車產(chǎn)業(yè)發(fā)展現(xiàn)狀與趨勢
- T-COFA 0021-2022 漁用油電混合多旋翼無人機安全檢查和維 護保養(yǎng)要求
- 2025貴州畢節(jié)市七星關(guān)區(qū)招聘城市社區(qū)工作者186人筆試備考題庫及答案解析
- 2025屆河北省“五個一”名校聯(lián)盟高三下學期4月聯(lián)考化學試題(含答案)
- 公安派出所優(yōu)質(zhì)建筑外觀形象設(shè)計基礎(chǔ)規(guī)范
- 電力排管檢驗批
- 世界民族音樂鑒賞之歐洲篇課件
- 深度學習人工智能在醫(yī)療圖像處理中的應用課件
- 自動涂膠機機械系統(tǒng)設(shè)計和實現(xiàn) 機械制造自動化專業(yè)
- 安徽省歷年中考數(shù)學試卷,2014-2021年安徽中考數(shù)學近八年真題匯總(含答案解析)
- 護工培訓課件課件
評論
0/150
提交評論