




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
高數(shù)公式·平方關(guān)系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
·積的關(guān)系:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
·倒數(shù)關(guān)系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
直角三角形ABC中,
角A的正弦值就等于角A的對(duì)邊比斜邊,
余弦等于角A的鄰邊比斜邊
正切等于對(duì)邊比鄰邊,
·三角函數(shù)恒等變形公式
·兩角和與差的三角函數(shù):
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·三角和的三角函數(shù):
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
·輔助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
·半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
·萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·推導(dǎo)公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
·其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函數(shù)的角度換算
[編輯本段]
公式一:
設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α與-α的三角函數(shù)值之間的關(guān)系:
sin(-α)=-sinαcos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanα
sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα
sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanα
sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα
(以上k∈Z)
部分高等內(nèi)容
[編輯本段]
·高等代數(shù)中三角函數(shù)的指數(shù)表示(由泰勒級(jí)數(shù)易得):
sinx=[e^(ix)-e^(-ix)]/(2i)cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]
泰勒展開有無窮級(jí)數(shù),e^z=exp(z)=1+z/1?。珃^2/2!+z^3/3?。珃^4/4?。珃^n/n?。?/p>
此時(shí)三角函數(shù)定義域已推廣至整個(gè)復(fù)數(shù)集。
·三角函數(shù)作為微分方程的解:
對(duì)于微分方程組y=-y'';y=y'''',有通解Q,可證明
Q=Asinx+Bcosx,因此也可以從此出發(fā)定義三角函數(shù)。
補(bǔ)充:由相應(yīng)的指數(shù)表示我們可以定義一種類似的函數(shù)——雙曲函數(shù),其擁有很多與三角函數(shù)的類似的性質(zhì),二者相映成趣。
特殊三角函數(shù)值
a0`30`45`60`90`
sina01/2√2/2√3/21
cosa1√3/2√2/21/20
tana0√3/31√3None
cotaNone√31√3/30導(dǎo)數(shù)公式:基本積分表:三角函數(shù)的有理式積分:SKIPIF1<0一些初等函數(shù):兩個(gè)重要極限:三角函數(shù)公式:·誘導(dǎo)公式:函數(shù)角Asincostgctg-α-sinαcosα-tgα-ctgα90°-αcosαsinαctgαtgα90°+αcosα-sinα-ctgα-tgα180°-αsinα-cosα-tgα-ctgα180°+α-sinα-cosαtgαctgα270°-α-cosα-sinαctgαtgα270°+α-cosαsinα-ctgα-tgα360°-α-sinαcosα-tgα-ctgα360°+αsinαcosαtgαctgα·和差角公式:·和差化積公式:
·倍角公式:·半角公式:SKIPIF1<0·正弦定理:SKIPIF1<0·余弦定理:SKIPIF1<0·反三角函數(shù)性質(zhì):SKIPIF1<0高階導(dǎo)數(shù)公式——萊布尼茲(Leibniz)公式:SKIPIF1<0中值定理與導(dǎo)數(shù)應(yīng)用:SKIPIF1<0曲率:SKIPIF1<0定積分的近似計(jì)算:SKIPIF1<0定積分應(yīng)用相關(guān)公式:SKIPIF1<0空間解析幾何和向量代數(shù):SKIPIF1<0SKIPIF1<0多元函數(shù)微分法及應(yīng)用SKIPIF1<0SKIPIF1<0微分法在幾何上的應(yīng)用:SKIPIF1<0方向?qū)?shù)與梯度:SKIPIF1<0多元函數(shù)的極值及其求法:SKIPIF1<0重積分及其應(yīng)用:SKIPIF1<0柱面坐標(biāo)和球面坐標(biāo):SKIPIF1<0曲線積分:SKIPIF1<0SKIPIF1<0曲面積分:SKIPIF1<0高斯公式:
SKIPIF1<0斯托克斯公式——曲線積分與曲面積分的關(guān)系:SKIPIF1<0常數(shù)項(xiàng)級(jí)數(shù):SKIPIF1<0級(jí)數(shù)審斂法:SKIPIF1<0SKIPIF1<0絕對(duì)收斂與條件收斂:SKIPIF1<0冪級(jí)數(shù):SKIPIF1<0函數(shù)展開成冪級(jí)數(shù):SKIPIF1<0一些函數(shù)展開成冪級(jí)數(shù):SKIPIF1<0歐拉公式:SKIPIF1<0三角級(jí)數(shù):SKIPIF1<0傅立葉級(jí)數(shù):SKIPIF1<0周期為SKIPIF1<0的周期函數(shù)的傅立葉級(jí)數(shù):
SKIPIF1<0微分方程的相關(guān)概念:SKIPIF1<0一階線性微分方程:SKIPIF1<0全微分方程:SKIPIF1<0二階微分方程:SKIPIF1<0二階常系數(shù)齊次線性微分方程及
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 品質(zhì)組長個(gè)人年終工作總結(jié)模版
- 遞歸生成器這是化骨綿掌啊
- 2025設(shè)備租賃合同書如何撰寫
- 建設(shè)工程和施工合同造價(jià)
- 電腦辦公技巧培訓(xùn)
- 2025前期物業(yè)管理委托合同示范文本
- 商務(wù)合作協(xié)議框架
- 農(nóng)產(chǎn)品批發(fā)市場管理軟件定制協(xié)議
- 一級(jí)建造師備考解析試題及答案分享
- 產(chǎn)品研發(fā)合作合同書要求
- 譯林版英語一年級(jí)下教學(xué)計(jì)劃各單元都有
- 濕疹病人的護(hù)理查房
- 海上油氣田前期研究
- 呼吸衰竭病人護(hù)理課件
- 運(yùn)動(dòng)員健康證明表
- 語文考試作文格子紙-word文檔
- 家庭護(hù)工合同范本
- 手表買賣合同協(xié)議書
- 《錯(cuò)誤是最好的成長機(jī)會(huì)》主題班會(huì)課課件
- 直接作業(yè)環(huán)節(jié)的“7+1”安全管理制度課件
- 煙花爆竹行業(yè)特種作業(yè)人員安全管理培訓(xùn)
評(píng)論
0/150
提交評(píng)論