上海市靜安區(qū)新中高級(jí)中學(xué)2024屆高考臨考沖刺數(shù)學(xué)試卷含解析_第1頁(yè)
上海市靜安區(qū)新中高級(jí)中學(xué)2024屆高考臨考沖刺數(shù)學(xué)試卷含解析_第2頁(yè)
上海市靜安區(qū)新中高級(jí)中學(xué)2024屆高考臨考沖刺數(shù)學(xué)試卷含解析_第3頁(yè)
上海市靜安區(qū)新中高級(jí)中學(xué)2024屆高考臨考沖刺數(shù)學(xué)試卷含解析_第4頁(yè)
上海市靜安區(qū)新中高級(jí)中學(xué)2024屆高考臨考沖刺數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

上海市靜安區(qū)新中高級(jí)中學(xué)2024屆高考臨考沖刺數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,滿足,且的最大值是最小值的4倍,則的值是()A.4 B. C. D.2.已知復(fù)數(shù),則的虛部為()A. B. C. D.13.已知,,則()A. B. C. D.4.已知函數(shù)()的最小值為0,則()A. B. C. D.5.函數(shù)在上單調(diào)遞減的充要條件是()A. B. C. D.6.已知函數(shù)的圖象的一條對(duì)稱軸為,將函數(shù)的圖象向右平行移動(dòng)個(gè)單位長(zhǎng)度后得到函數(shù)圖象,則函數(shù)的解析式為()A. B.C. D.7.的展開(kāi)式中各項(xiàng)系數(shù)的和為2,則該展開(kāi)式中常數(shù)項(xiàng)為A.-40 B.-20 C.20 D.408.設(shè)函數(shù)恰有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.9.某設(shè)備使用年限x(年)與所支出的維修費(fèi)用y(萬(wàn)元)的統(tǒng)計(jì)數(shù)據(jù)分別為,,,,由最小二乘法得到回歸直線方程為,若計(jì)劃維修費(fèi)用超過(guò)15萬(wàn)元將該設(shè)備報(bào)廢,則該設(shè)備的使用年限為()A.8年 B.9年 C.10年 D.11年10.過(guò)拋物線的焦點(diǎn)作直線交拋物線于兩點(diǎn),若線段中點(diǎn)的橫坐標(biāo)為3,且,則拋物線的方程是()A. B. C. D.11.已知等差數(shù)列中,,則()A.20 B.18 C.16 D.1412.設(shè)直線的方程為,圓的方程為,若直線被圓所截得的弦長(zhǎng)為,則實(shí)數(shù)的取值為A.或11 B.或11 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件,則的最大值為_(kāi)_______.14.若,且,則的最小值是______.15.角α的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與x軸的非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn)P(1,2),則sin(π﹣α)的值是_____.16.已知向量=(1,2),=(-3,1),則=______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)△ABC的內(nèi)角的對(duì)邊分別為,已知△ABC的面積為(1)求;(2)若求△ABC的周長(zhǎng).18.(12分)在中,a,b,c分別是角A,B,C的對(duì)邊,并且.(1)已知_______________,計(jì)算的面積;請(qǐng)①,②,③這三個(gè)條件中任選兩個(gè),將問(wèn)題(1)補(bǔ)充完整,并作答.注意,只需選擇其中的一種情況作答即可,如果選擇多種情況作答,以第一種情況的解答計(jì)分.(2)求的最大值.19.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)當(dāng)時(shí),證明:.20.(12分)某工廠的機(jī)器上有一種易損元件A,這種元件在使用過(guò)程中發(fā)生損壞時(shí),需要送維修處維修.工廠規(guī)定當(dāng)日損壞的元件A在次日早上8:30之前送到維修處,并要求維修人員當(dāng)日必須完成所有損壞元件A的維修工作.每個(gè)工人獨(dú)立維修A元件需要時(shí)間相同.維修處記錄了某月從1日到20日每天維修元件A的個(gè)數(shù),具體數(shù)據(jù)如下表:日期1日2日3日4日5日6日7日8日9日10日元件A個(gè)數(shù)91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A個(gè)數(shù)12241515151215151524從這20天中隨機(jī)選取一天,隨機(jī)變量X表示在維修處該天元件A的維修個(gè)數(shù).(Ⅰ)求X的分布列與數(shù)學(xué)期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前維修處有兩名工人從事維修工作,為使每個(gè)維修工人每天維修元件A的個(gè)數(shù)的數(shù)學(xué)期望不超過(guò)4個(gè),至少需要增加幾名維修工人?(只需寫(xiě)出結(jié)論)21.(12分)如圖1,在邊長(zhǎng)為4的正方形中,是的中點(diǎn),是的中點(diǎn),現(xiàn)將三角形沿翻折成如圖2所示的五棱錐.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.22.(10分)某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨(dú)立的從五所高校中任選2所.(1)求甲、乙、丙三名同學(xué)都選高校的概率;(2)若已知甲同學(xué)特別喜歡高校,他必選校,另在四校中再隨機(jī)選1所;而同學(xué)乙和丙對(duì)五所高校沒(méi)有偏愛(ài),因此他們每人在五所高校中隨機(jī)選2所.(i)求甲同學(xué)選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學(xué)中選高校的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】試題分析:先畫(huà)出可行域如圖:由,得,由,得,當(dāng)直線過(guò)點(diǎn)時(shí),目標(biāo)函數(shù)取得最大值,最大值為3;當(dāng)直線過(guò)點(diǎn)時(shí),目標(biāo)函數(shù)取得最小值,最小值為3a;由條件得,所以,故選D.考點(diǎn):線性規(guī)劃.2、C【解析】

先將,化簡(jiǎn)轉(zhuǎn)化為,再得到下結(jié)論.【詳解】已知復(fù)數(shù),所以,所以的虛部為-1.故選:C【點(diǎn)睛】本題主要考查復(fù)數(shù)的概念及運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.3、D【解析】

分別解出集合然后求并集.【詳解】解:,故選:D【點(diǎn)睛】考查集合的并集運(yùn)算,基礎(chǔ)題.4、C【解析】

設(shè),計(jì)算可得,再結(jié)合圖像即可求出答案.【詳解】設(shè),則,則,由于函數(shù)的最小值為0,作出函數(shù)的大致圖像,結(jié)合圖像,,得,所以.故選:C【點(diǎn)睛】本題主要考查了分段函數(shù)的圖像與性質(zhì),考查轉(zhuǎn)化思想,考查數(shù)形結(jié)合思想,屬于中檔題.5、C【解析】

先求導(dǎo)函數(shù),函數(shù)在上單調(diào)遞減則恒成立,對(duì)導(dǎo)函數(shù)不等式換元成二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結(jié)合圖象可知,,解得故.故選:C.【點(diǎn)睛】本題考查求三角函數(shù)單調(diào)區(qū)間.求三角函數(shù)單調(diào)區(qū)間的兩種方法:(1)代換法:就是將比較復(fù)雜的三角函數(shù)含自變量的代數(shù)式整體當(dāng)作一個(gè)角(或),利用基本三角函數(shù)的單調(diào)性列不等式求解;(2)圖象法:畫(huà)出三角函數(shù)的正、余弦曲線,結(jié)合圖象求它的單調(diào)區(qū)間.6、C【解析】

根據(jù)輔助角公式化簡(jiǎn)三角函數(shù)式,結(jié)合為函數(shù)的一條對(duì)稱軸可求得,代入輔助角公式得的解析式.根據(jù)三角函數(shù)圖像平移變換,即可求得函數(shù)的解析式.【詳解】函數(shù),由輔助角公式化簡(jiǎn)可得,因?yàn)闉楹瘮?shù)圖象的一條對(duì)稱軸,代入可得,即,化簡(jiǎn)可解得,即,所以將函數(shù)的圖象向右平行移動(dòng)個(gè)單位長(zhǎng)度可得,則,故選:C.【點(diǎn)睛】本題考查了輔助角化簡(jiǎn)三角函數(shù)式的應(yīng)用,三角函數(shù)對(duì)稱軸的應(yīng)用,三角函數(shù)圖像平移變換的應(yīng)用,屬于中檔題.7、D【解析】令x=1得a=1.故原式=.的通項(xiàng),由5-2r=1得r=2,對(duì)應(yīng)的常數(shù)項(xiàng)=80,由5-2r=-1得r=3,對(duì)應(yīng)的常數(shù)項(xiàng)=-40,故所求的常數(shù)項(xiàng)為40,選D解析2.用組合提取法,把原式看做6個(gè)因式相乘,若第1個(gè)括號(hào)提出x,從余下的5個(gè)括號(hào)中選2個(gè)提出x,選3個(gè)提出;若第1個(gè)括號(hào)提出,從余下的括號(hào)中選2個(gè)提出,選3個(gè)提出x.故常數(shù)項(xiàng)==-40+80=408、C【解析】

恰有兩個(gè)極值點(diǎn),則恰有兩個(gè)不同的解,求出可確定是它的一個(gè)解,另一個(gè)解由方程確定,令通過(guò)導(dǎo)數(shù)判斷函數(shù)值域求出方程有一個(gè)不是1的解時(shí)t應(yīng)滿足的條件.【詳解】由題意知函數(shù)的定義域?yàn)椋?因?yàn)榍∮袃蓚€(gè)極值點(diǎn),所以恰有兩個(gè)不同的解,顯然是它的一個(gè)解,另一個(gè)解由方程確定,且這個(gè)解不等于1.令,則,所以函數(shù)在上單調(diào)遞增,從而,且.所以,當(dāng)且時(shí),恰有兩個(gè)極值點(diǎn),即實(shí)數(shù)的取值范圍是.故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,函數(shù)與方程的應(yīng)用,屬于中檔題.9、D【解析】

根據(jù)樣本中心點(diǎn)在回歸直線上,求出,求解,即可求出答案.【詳解】依題意在回歸直線上,,由,估計(jì)第年維修費(fèi)用超過(guò)15萬(wàn)元.故選:D.【點(diǎn)睛】本題考查回歸直線過(guò)樣本中心點(diǎn)、以及回歸方程的應(yīng)用,屬于基礎(chǔ)題.10、B【解析】

利用拋物線的定義可得,,把線段AB中點(diǎn)的橫坐標(biāo)為3,代入可得p值,然后可得出拋物線的方程.【詳解】設(shè)拋物線的焦點(diǎn)為F,設(shè)點(diǎn),由拋物線的定義可知,線段AB中點(diǎn)的橫坐標(biāo)為3,又,,可得,所以拋物線方程為.故選:B.【點(diǎn)睛】本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,利用拋物線的定義是解題的關(guān)鍵.11、A【解析】

設(shè)等差數(shù)列的公差為,再利用基本量法與題中給的條件列式求解首項(xiàng)與公差,進(jìn)而求得即可.【詳解】設(shè)等差數(shù)列的公差為.由得,解得.所以.故選:A【點(diǎn)睛】本題主要考查了等差數(shù)列的基本量求解,屬于基礎(chǔ)題.12、A【解析】

圓的圓心坐標(biāo)為(1,1),該圓心到直線的距離,結(jié)合弦長(zhǎng)公式得,解得或,故選A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)題意,畫(huà)出可行域,將目標(biāo)函數(shù)看成可行域內(nèi)的點(diǎn)與原點(diǎn)距離的平方,利用圖象即可求解.【詳解】可行域如圖所示,易知當(dāng),時(shí),的最大值為.故答案為:9.【點(diǎn)睛】本題考查了利用幾何法解決非線性規(guī)劃問(wèn)題,屬于中檔題.14、8【解析】

利用的代換,將寫(xiě)成,然后根據(jù)基本不等式求解最小值.【詳解】因?yàn)椋慈〉忍?hào)),所以最小值為.【點(diǎn)睛】已知,求解()的最小值的處理方法:利用,得到,展開(kāi)后利用基本不等式求解,注意取等號(hào)的條件.15、【解析】

計(jì)算sinα,再利用誘導(dǎo)公式計(jì)算得到答案.【詳解】由題意可得x=1,y=2,r,∴sinα,∴sin(π﹣α)=sinα.故答案為:.【點(diǎn)睛】本題考查了三角函數(shù)定義,誘導(dǎo)公式,意在考查學(xué)生的計(jì)算能力.16、-6【解析】

由可求,然后根據(jù)向量數(shù)量積的坐標(biāo)表示可求.【詳解】∵=(1,2),=(-3,1),∴=(-4,-1),則=1×(-4)+2×(-1)=-6故答案為-6【點(diǎn)睛】本題主要考查了向量數(shù)量積的坐標(biāo)表示,屬于基礎(chǔ)試題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2).【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由和計(jì)算出,從而求出角,根據(jù)題設(shè)和余弦定理可以求出和的值,從而求出的周長(zhǎng)為.試題解析:(1)由題設(shè)得,即.由正弦定理得.故.(2)由題設(shè)及(1)得,即.所以,故.由題設(shè)得,即.由余弦定理得,即,得.故的周長(zhǎng)為.點(diǎn)睛:在處理解三角形問(wèn)題時(shí),要注意抓住題目所給的條件,當(dāng)題設(shè)中給定三角形的面積,可以使用面積公式建立等式,再將所有邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,有時(shí)需將角的關(guān)系轉(zhuǎn)化為邊的關(guān)系;解三角形問(wèn)題常見(jiàn)的一種考題是“已知一條邊的長(zhǎng)度和它所對(duì)的角,求面積或周長(zhǎng)的取值范圍”或者“已知一條邊的長(zhǎng)度和它所對(duì)的角,再有另外一個(gè)條件,求面積或周長(zhǎng)的值”,這類問(wèn)題的通法思路是:全部轉(zhuǎn)化為角的關(guān)系,建立函數(shù)關(guān)系式,如,從而求出范圍,或利用余弦定理以及基本不等式求范圍;求具體的值直接利用余弦定理和給定條件即可.18、(1)見(jiàn)解析(2)1【解析】

(1)選②,③.可得,結(jié)合,求得.即可;若選①,②.由可得由,求得.即可;若選①,③,可得,又,可得,即可;(2)化簡(jiǎn),根據(jù)角的范圍求最值即可.【詳解】(1)若選②,③.,,,,又,.的面積.若選①,②.由可得,,,又,.的面積.若選①,③,,又,,可得,的面積.(2),當(dāng)時(shí),有最大值1.【點(diǎn)睛】本題考查了正余弦定理,三角三角恒等變形,考查了計(jì)算能力,屬于中檔題.19、(1)見(jiàn)解析;(2)見(jiàn)解析【解析】

(1)求導(dǎo)得,分類討論和,利用導(dǎo)數(shù)研究含參數(shù)的函數(shù)單調(diào)性;(2)根據(jù)(1)中求得的的單調(diào)性,得出在處取得最大值為,構(gòu)造函數(shù),利用導(dǎo)數(shù),推出,即可證明不等式.【詳解】解:(1)由于,得,當(dāng)時(shí),,此時(shí)在上遞增;當(dāng)時(shí),由,解得,若,則,若,,此時(shí)在遞增,在上遞減.(2)由(1)知在處取得最大值為:,設(shè),則,令,則,則在單調(diào)遞減,∴,即,則在單調(diào)遞減∴,∴,∴.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,涉及分類討論和構(gòu)造新函數(shù),通過(guò)導(dǎo)數(shù)證明不等式,考查轉(zhuǎn)化思想和計(jì)算能力.20、(Ⅰ)分布列見(jiàn)解析,;(Ⅱ);(Ⅲ)至少增加2人.【解析】

(Ⅰ)求出X的所有可能取值為9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可.(Ⅱ)當(dāng)P(a≤X≤b)取到最大值時(shí),求出a,b的可能值,然后求解P(a≤X≤b)的最大值即可.(Ⅲ)利用前兩問(wèn)的結(jié)果,判斷至少增加2人.【詳解】(Ⅰ)X的取值為:9,12,15,18,24;,,,,,X的分布列為:X912151824P故X的數(shù)學(xué)期望;(Ⅱ)當(dāng)P(a≤X≤b)取到最大值時(shí),a,b的值可能為:,或,或.經(jīng)計(jì)算,,,所以P(a≤X≤b)的最大值為.(Ⅲ)至少增加2人.【點(diǎn)睛】本題考查離散型隨機(jī)變量及其分布列,離散型隨機(jī)變量的期望與方差,屬于中等題.21、(1)證明見(jiàn)解析;(2).【解析】

(1)利用線面平行的定義證明即可(2)取的中點(diǎn),并分別連接,,然后,證明相應(yīng)的線面垂直關(guān)系,分別以,,為軸,軸,軸建立空間直角坐標(biāo)系,利用坐標(biāo)運(yùn)算進(jìn)行求解即可【詳解】證明:(1)在圖1中,連接.又,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論