




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
MorganstanleyRESEARCH
February19,202409:00PMGMT
AsiaTechnology|AsiaPacific
AISupplyChainTracker–
DynamicDevelopments
GPUdesignupgrades,offeringexpansionandincreasingsupplychainengagementarepushingforwardAItechdevelopments.
AIdownstreamsupplychain:
?OurchecksindicateNVDAplanstomovetheB100GPUproductionscheduletomid-2024withB100GPUmoduleshipmentrolloutinJulyandmass
productioninAugust.Currentordersfor3Q24are~50-60Kunits.
?OurchecksindicatethatUnimicronhasbeenapprovedasaqualifiedNvidiaB100ABFsubstratevendor,secondtoIbiden.However,ourchecksindicatethatitsyieldrateremainslowerthanIbiden,sothisismoreofa+ve
sentimentforthestockbutnotforearnings(link).
?Giga-Byte'sJanrevenueat~NT$16.9bn(+32%m/m,+106%y/y)impliesthatitlikelydid800-900unitsofAIserversduringthemonth,whichissimilartoOctandNov.
?LambdaraisedUS$320mnSeriesCfundingonFeb15.ThisnewfundingwillaccelerategrowthforitsGPUcloudandensureAIengineeringteamshaveaccessto"thousands"ofNvidiaGPUswithhigh-speedNvidiaQuantum-2
InfiniBandnetworking.
AIsemisupplychain-AIASIC/GPU/Memory
?ReutersreportedNVIDIAisbuildingagroupworkingoncustomchipsfor
hyperscalers.JoeMoorebelievesthisispartofNVIDIA’snewstrategyto
focusonmarketshareandpreventgrowthofcompetition(link).Joedoesn’tthinkit'sdirectlynegativetoMarvellbecauseit'daffirmthegrowthpotentialofASICandpartofthepointofASICistodiversifyawayfromNVIDIA.OurglobalviewisGPUcanstilldominateAItrainingdemandgivenNVIDIA’sfastnewproductramp,whileASICdesignservices,suchasAlchip,canstillgrownicelygiventheirexposuretoinferencechipsandAIsemistart-ups.
?AddingsalesofalternativecloudAIsemis(e.g.,ASIC),cloudAIsemiTAMisalreadyUS$100bnin2024.Foralonger-termperspective,weintroduceournewAIsemidemandmodeltogaugethelong-termASICdesignserviceTAM,estimatedat~US$30bnby2030(~3xvs.2024).
?MaeilBusinessNewsKoreareportedthatTSMCandSKHynixhaveformedtheso-calledAISemiconductorAlliance.AccordingtoTrendForce,HBM4
(expectedtodebutin2026)willbethefirsttousea12nmlogicprocess
technologyforitsbasedie,whichfoundries,notDRAMmakers,willnow
make.WethinkthisdemonstratesTSMC’stechnologyleadershipinthe
futureAIchipadvancedpackaging,andpositivereadacrosstoASMPT,whichiscurrentlysupplyingbothSKHynix(HBM)andTSMC(logic)withTCBtools.
Update
MorganStanleyTaiwanLimited+
SharonShih
EquityAnalyst
+88622730-2865
Sharon.Shih@
CharlieChan
EquityAnalyst
+88622730-1725
Charlie.Chan@
HowardKao
EquityAnalyst
+88622730-2989
Howard.Kao@
DanielYen,CFA
EquityAnalyst
+88622730-2863
Daniel.Yen@
DerrickYang
EquityAnalyst
+88622730-2862
Derrick.Yang@
MorganStanleyAsiaLimited+
AndyMeng,CFA
EquityAnalyst
+8522239-7689
Andy.Meng@
DaisyDai,CFA
EquityAnalyst
+8522848-7310
Daisy.Dai@
MorganStanleyTaiwanLimited+
RayWu,CFA
EquityAnalyst
+88622730-2871
Ray.Wu@
KevinChiueh
ResearchAssociate
+88622730-2860
Kevin.Chiueh@
DylanLiu
EquityAnalyst
+88622730-1723
Dylan.Liu@
SamanthaChen
ResearchAssociate
+88622730-2876
Samantha.Chen@
TiffanyYeh
ResearchAssociate
+88627712-3032
Tiffany.Yeh@
IreneYen
ResearchAssociate
+88622730-2869
Irene.Yen@
GreaterChinaTechnologyHardware
AsiaPacific
In-Line
IndustryView
MorganStanleydoesandseekstodobusinesswith
companiescoveredinMorganStanleyResearch.Asaresult,investorsshouldbeawarethatthefirmmayhaveaconflictofinterestthatcouldaffecttheobjectivityofMorganStanley
Research.InvestorsshouldconsiderMorganStanley
Researchasonlyasinglefactorinmakingtheirinvestmentdecision.
Foranalystcertificationandotherimportantdisclosures,refertotheDisclosureSection,locatedattheendofthisreport.
+=Analystsemployedbynon-U.S.affiliatesarenotregisteredwithFINRA,maynotbeassociatedpersonsofthememberandmaynotbesubjecttoFINRArestrictionson
communicationswithasubjectcompany,publicappearancesandtradingsecuritiesheldbyaresearchanalystaccount.
Morganstanley
RESEARCH
Update
2
Keyupdates
?WehaveupdatedAIGPUdemand(NVIDIA’sforecast)andsupply(CoWoS)inExhibit6andintroducedASICdesignservicemarketsizeatUS$30bnin2030(seeExhibit10).
?WehaveupdatedNvidiaserversupply/demandshareanalysisbasedonJoeMoore'srecentlyupdatedNvidiaforecastsinExhibit25toExhibit30.
(kwpm)
Non-TSMC(UMC/SPIL/Others)TSMC
Source:Companydata,MorganStanleyResearch(e)estimates
Exhibit3:TSMC'sCoWoSconsumptionbycustomer
TSMCCoWoScapacitydemandbykeycustomer
250
200
100
50
020222023e2024e
150
100
50
0
Source:TrendForce,MorganStanleyResearch(e)estimates
Exhibit4:HBMdemandisnearlytwicevs.2023
HBMdemand(kGB)
700,000
600,000
500,000
400,000
300,000
200,000
100,000
0
2023e2024e
NVIDIAAMDHabanaGoogleAWSTeslaMicrosoftChineseGPU/ASIC
2023e2024e
HynixSamsungMU
Update
Supply-chainTracker–AISemis
Majorsupplybottleneck–CoWoScapacitytrend
Exhibit1:CoWoScapacityexpansionbyvendor
Exhibit2:HBMTSVcapacityalsosettodoublein2024
CoWoSsupplycapacitybreakdown
HBMTSVcapacity(kwpm)
35
30
25
202715
1011
1035
20222023e2024e
250
200
150
Source:TrendForce,MorganStanleyResearch
NVIDIABroadcomAMDXilinxAWS+AlchipMarvellGUCOthers
Source:Companydata,MorganStanleyResearch(e)estimates
Exhibit5:WhatisCoWoS?ChiponWafer(interposer)on
Substrate
Source:TSMC
MorganStanleyResearch3
Morganstaney
RESEARCH
Update
Exhibit6:
NVIDIAAIGPUrevenueimpliedCoWoSdemand–Doublebookingatfoundries?
CY23eCY24eCY25eCY26e
NVIDIArevenueforecastimpliedGPUvolume
NVIDIAAIGPUrevenue(US$mn)
37,432
70,593
72,065
83,843
Y/Y%
177%
89%
2%
16%
AIGPUASP(US$)
25,403
28,354
30,656
35,313
AIGPUvolume(kunits)
1,474
2,490
2,351
2,374
Y/Y%
30%
69%
-6%
1%
CoWoSbookingsimpliedAIGPUvolume
1,600
4,000
GPUchipcostcalculation
Waferfrontendcost
#ofgrossdieperwafer
65
64
59
44
Productionyield
60%
65%
70%
70%
#ofgooddieperwafer
39
42
41
31
TSMCblendedwaferpriceforNVIDIAAIGPU
16,000
18,000
18,000
20,000
WaferdierevenuetoTSMCperchip
410
432
435
645
Advancedbackendcost
#ofchipperCoWoSwafer
29
28
25
18
CoWoSwaferpriceforNVIDIAAIGPU
6,000
8,000
8,500
9,000
CoWoSrevenuetoTSMCperchip
209
286
347
502
Chipprobe(wafertest)revenuetoTSMCperchip
199
314
381
552
TotalrevenuetoTSMCperchip
818
1,031
1,163
1,699
NVIDIAAIGPUimplicationstoTSMC
DemandforTSMCCoWoScapacity
kwaferperannum
51
89
96
132
kwaferpermonth
DemandforTSMC4nm/7nmcapacity
4
7
8
11
kwaferperannum
38
60
57
77
kwaferpermonth
3
5
5
6
RevenuecontributiontoTSMC(US$mn)
1,205
2,568
2,733
4,035
Y/Y%
65%
113%
6%
48%
Revenuecontribution%ofTSMC
1.7%
3.0%
2.7%
3.4%
Source:Companydata,MorganStanleyResearch(e)estimates
4
US$mn
Morganstanley
RESEARCH
Update
AIsemialternatives–Customchips(ASIC)
Exhibit7:Datacentercompanies'customAIchipstrategy
Firstofficial
announcementforAIASIC
AIASICproject
ASICpartners
ASIC'sbenefits
vs.merchantsolutions
Chipsourcingstrategies
2016
TPU
Broadcom
2-3xgreaterenergyefficiency
Googlestartedtoincreasein-housecustomchip(TPU)adoptionsince
2017.Currently,mostoftheinternaltrainingandinferenceworkloadsarenowcompletedbyTPUs,whileNVIDIA'ssolutionsarealsoavailablefor
Google'scloudcustomers.
AWS
2018
Inferentia
Trainium
Alchip,Marvell
50%greater
performanceperwatt
AWSusesmultiplesourcesofchipstosupportcustomers'differentworkloads.Forexample,customASICs(Trainium/InferentiaAIchips,GravatonCPU)andGPCPU/GPUs(Intel,NVIDIAandAMD).
Tesla
2018
D1(Dojosupercomputer)FSD(on-carAD/ADAS)
Alchip,Samsung
33%ofcostsavings
Teslastartedtoincorporateitsin-housecustomchips(D1andFSD)since2019toreplaceNVIDIA'sgeneral-purposesolutions.
Microsoft
2023
Maia100AIAcceleratorCobalt100CPU
GUC
40%performance
improvement
Microsoft'sAthenaprojectadoptsAIsolutionsfrommultiplesources,suchasin-houseASIC(Maia100AIAccelerator&Cobalt100CPU),
AMD's/NVIDIA'sGPUs,d-Matrix'sAIchip,etc.Weexpectitsowncustomchipstoentervolumeproductionin2024.
Meta
2023
MTIA
MSVP
N/A
2xperformance
Metausesin-houseASICforAIinferenceworkload,butstickswithNVIDIA'sA100foritstrainingsupercomputer.Itscustomaccelerator(MTIA)adoptsRISC-Vcores.
Source:Companydata,MorganStanleyResearchestimates
willrepresent
WeestimatecustomAIASIC
~US
Exhibit9:
Exhibit8:WeexpectcustomAIchips(ASICs)tooutgrow
$11bnof
marketvaluein
2024e
CustomAIASICvaluemix,2024e
MicrosoftMeta(MTIA)
(AthenaASICs)$50mnOtherAIASICs
GPUsandpotentiallytakeupto30%ofthecloudAIsemimarket
infourtofiveyears
Cloudsemibreakdown:GeneralAIvs.CustomAI
250,000
AlibabaT-Head$100mnN/$159mn$400mn
200,000
$800mn-
Tesla(Dojo&FSD)
150,000
AWS
(Inferentia&
Trainium)
100,000
$2,000mn
70%
50,000
Google(TPU)$7,500mn
0
202120222023e2024e2025e2026e2027e
CustomAI
General-purposeAI(GPU,FPGA,merchantAI)
Source:Companydata,MorganStanleyResearch(e)estimates
Source:Morgan
StanleyResearch(e)estimates
Research
5
MorganStanley
US$mn
US$mn
Morganstanley
RESEARCH
Update
Exhibit10:Weexpectbackenddesignservicestobecomemoreimportantassystemhousesbuilduptheirownchipfront-end
designteams
Exhibit11:AIprojectsbydesignservicecompaniescouldbeanimportantdriverforthefoundryindustry
Foundryrevenue:DesignserviceCloudAIprojects(basecase)
CloudAIsemis:Customvs.General-purpose(basecase)
250,000
200,000
150,000
100,000
50,000
0-202120222023e2024e2025e2026e2027e2028e2029e2030e
20,000 18,000 16,000 14,000 12,000 10,000 8,000 6,000 4,000
2,00-
202120222023e2024e2025e2026e2027e2028e2029e2030e
CustomAI(ASIC)GeneralAI(e.g.,GPU,FPGA)
Source:Companydata,Gartner,MorganStanleyResearch(e)estimates
Source:Companydata,Gartner,MorganStanleyResearch(e)estimates
Exhibit12:
MajorcustomAIchipprojects
Source:Google,AWS,Meta,Intel,Tesla
6
TPUv
4
TSMC7nm
275
8,800
400
AMD
MI300
TSMC5nm
383
12,256
1,017
146
12.05
Yes
IntelHabana
Gaudi2
TSMC7nm
?
?
768
?
?
?
NVIDIA
A100
TSMC7nm
312
9,984
826
54
12.09
Yes
Processnode
TensorFloat16(TFLOPS)
TPP("TotalProcessingPerformance")
Diesize(mm^2)
Transistorcount(bn)
PD("PerformanceDensity")
Exceedingthreshold?
22.00
Yes
Morganstaney
RESEARCH
Update
Whatare"TPP"and"PD"?
"TotalProcessingPerformance"("TPP")is2x"MacTOPS"x"bitlengthoftheoperation",
aggregatedoverallprocessingunitsontheintegratedcircuit.Forexample,NVIDIA'sA100
TPP=2*312*16=9,984.BelowisadetailedexplanationofTPP:
?2x:Itisbasedonindustryconventionofcountingonemultiply-accumulate
computationastwooperationsforpurposeofdatasheets.
?MacTOPS:ThetheoreticalpeaknumberofTOPS(TeraOperationsPerSecond)for
multiply-accumulatecomputation.
?Bitlengthoftheoperation:Itisthelargestbit-lengthoftheinputstothe
multiply-accumulate.
?AggregatetheTPPsforeachprocessingunitontheintegratedcircuittoarriveata
total(mainlyforchipletdesigns).
"PerformanceDensity"("PD")is"TPP"dividedby"applicablediearea,"whichismeasuredin
millimeterssquaredandincludesalldieareaoflogicdiesmanufacturedwithaprocess
nodethatusesanon-planartransistorarchitecture.Forexample,NVIDIA'sA100PD=
9,984/826=12.09.
Exhibit13:SpeccomparisonofmajorAIGPUsandASICs
NVIDIA
L40S
TSMC5nm
362
11,584
609
76
19.02
Yes
Source:Companydata,MorganStanleyResearch.Note:TPPandPDcalculationsarebasedonBIS'slatestrulings.
Exhibit14:IntelsaysthatHabana'sGaudi2hascomparableAIcapabilitywithNVIDIA's
A100(80GB)GPU
Source:Intel
MorganStanleyResearch7
AWS
5%
Habana
1%
Update
2024AIsemi
waferrevenueandHBMdemandcalculation
Exhibit15:HBMconsumptionin2024e–Upto640mnGB
TotalHBM
TotalHBMsizeHBM
HBMchipunitsHBMvendordemand
(GB)generation
(kGB)
AIGPU(2024e)
CoWoScapacity
allocation
(kwafers)
AIchipvendorProductname
Implied
shipments(k)
Chipsper
CoWoSwafer
HBMchip
density(GB)
NVIDIA
H100
B100
130
20
29
14
3,770
280
16
25
5
8
80
200
HBM3
HBM3e
Hynix
Hynix/Micron/Samsung
301,600
56,000
AMD
MI300
25
12
300
24
8
192
HBM3
Samsung
57,600
Habana
Gaudi3
3
30
81
16
6
96
HBM2e
Samsung
7,776
AIASIC(2024e)
TPUv5training
TPUv5inference
30
30
30
50
900
1,500
16
16
6
4
96
64
HBM2e
HBM2e
Samsung
Samsung
86,400
96,000
AWS
Inferentia2
Trainium2
17
7
20
15
340
105
24
24
2
4
48
96
HBM2e
HBM3
Samsung
Samsung
16,320
10,080
Tesla
Dojo1
FSD
NA
NA
NA
NA
300
1,600
32
NA
5
NA
160
NA
HBM2e/HMB3
NA
Samsung
NA
1,920
-
Microsoft
Maia100
0.3
29
8
16
4
64
HBM2e
Samsung
520
ChineseGPU/ASIC
Total
ChineseGPU/ASIC
5
267
20
100
9,344
16
4
64
na
Samsung
6,400
640,616
Source:Companydata,MorganStanleyResearch(e)estimates
Exhibit16:HBMconsumptionin2024e–NVIDIAtobethelargestcustomer
Chinese
GPU/ASIC
1%
TeslaMicrosoft
0%0.1%
AMD
11%
NVIDIA
66%
16%
Source:Companydata,MorganStanleyResearch(e)estimates
Exhibit17:AI
computingwaferconsumptionin2024e–UptoUS$3bnrevenue
Wafer
consumption
(kwafers)
Waferrevenue
TAM(US$mn)
Computedie
units
Waferprice
(US$)
Implied
shipments(k)
Computedie
size
Chipsper
CoWoSwafer
Geometry
AIchipvendor
Productname
CoWoScapacity
allocation
(kwafers)
3,770
280
300
81
1,606
224
175
47
18,000
18,000
20,000
20,000
20,000
20,000
11,000
20,000
11,000
11,000
20,000
11,000
29
14
12
30
H100
B100
MI300
Gaudi3
TPUv5training
TPUv5inference
Inferentia
2
Trainium
2
Dojo
1
FSD
Maia100
ChineseGPU/ASIC
130
89
12
9
2
814
700
110
768
1
2
8
1
4nm
4nm
5nm
5nm
5nm
5nm
7nm
5nm
7nm
7nm
5nm
7nm
AIGPU(2024e)
NVIDIA
20
25
3
AMD
Habana
30
30
50
20
15
NA
NA
29
20
900
1,500
340
105
300
1,600
8
100
9,344
325
325
700
700
645
10
17
8
5
6
14
0.2
4
177
199
331
83
93
67
152
4
44
3,060
1
1
1
2
1
1
1
1
AIASIC(2024e)
30
17
AWS
7
NA
NA
0.3
5
267
Tesla
300
700
1,000
Microsoft
ChineseGPU/ASIC
Total
Source:Companydata,MorganStanleyResearch(e)estimates
8
(NT$mn)
(NT$bn)
(NT$mn)
Tesla
7%
17%
AWS
6%
Habana
2%
AMD
6%
M
or
st
ey
an
gan
RESEARCH
Update
Leading-edgewafer
Exhibit18:
consumptionbycustomersin2024e
Meta
0.1%
Microsoft
1.2%
ChineseGPU/ASIC
1%
NVIDIA
60%
Research(e)estimates
Source:
Companydata,MorganStanley
Monthlysales
chain
of
AI
Taiwan's
semisupply
enablers
KYECandTSMC–
Y/Yperformance
AIupstream
KeyAI
20:Key
Exhibit19:
Exhibit
upstreamenablers:Alchip,
Y/YPerformanceofupstreamAIenablers
Monthlysales
Monthlysalesof
upstreamAIenablers
170%
260
240
220
200
4,000
120%
3,500
70%
3,000
20%
2,500
-30%
180
160
140
120
2,000
Jul-22Aug-22Sep-22Oct-22Nov-22Dec-22Jan-23Feb-23Mar-23Apr-23May-Jun-23Jul-23Aug-23Sep-23Oct-23Nov-23Dec-23
23
1,500
KYEC(AIGPUFinalTest)
TSMC(AIChipManufacturing)
Alchip(AIASIC)
1,000
500
Source:Companydata,TEJ,MorganStanleyResearch
Jul-22Sep-22Nov-22Jan-23Mar-23May-23Jul-23Sep-23Nov-23
Alchip(AIASIC)
KYEC(AIGPUFinalTest)
TSMC(AIChipManufacturing;RHS)
Research
Source:Companydata,TEJ,MorganStanley
9
Research
MorganStanley
10
US$mn
1Q14
3Q14
1Q15
3Q15
1Q16
3Q16
1Q17
3Q17
1Q18
3Q18
1Q19
3Q19
1Q20
3Q20
1Q21
3Q21
1Q22
3Q22
1Q23
3Q23
1Q24e
3Q24e
1Q25e
3Q25e
Morganstaney
RESEARCH
Update
MajorAIGPUvendors–NVIDIAsalesandinventorytrend
Exhibit22:NVIDIA'sinventorydays/level
Exhibit21:GeneralpurposeAIchipquarterlyrevenue
Datacenter/HPCsemirevenue:NVIDIA+AMD/Xilinx
300%250%200%150%100%50%
0%
-50%
30,000
25,000
20,000
15,000
10,0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030中國皮質(zhì)類固醇反應(yīng)性皮膚病行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 2025至2030中國用于增強(qiáng)現(xiàn)實的智能眼鏡行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 2025至2030中國生物攪拌器行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 2025至2030中國玩具煙花市場產(chǎn)銷規(guī)模與未來需求量研究報告
- 2025至2030中國特種植物油行業(yè)市場深度研究與戰(zhàn)略咨詢分析報告
- 教師合同管理與權(quán)益維護(hù)
- 個性化學(xué)習(xí)路徑在醫(yī)療培訓(xùn)中的實踐案例分析
- 促進(jìn)學(xué)困生發(fā)展的個性化心理干預(yù)與指導(dǎo)方案研究
- 教育技術(shù)對幼兒心理健康的積極作用
- 商業(yè)創(chuàng)新中的在線教育平臺法律風(fēng)險分析
- SAP S4HANA 用戶操作手冊-FICO-006-財務(wù)月結(jié)
- 攀巖運動項目介紹
- 經(jīng)濟(jì)糾紛和解協(xié)議書
- 2023年蕪湖市灣沚區(qū)國有資本建設(shè)投資有限公司招聘考試真題
- 棋牌室四人合作協(xié)議書范文
- 中國醫(yī)院質(zhì)量安全管理第2-13部分:患者服務(wù)臨床用血
- 《籃球原地運球》教案 (共三篇)
- 思維模型之六頂思考帽
- 2025年高考化學(xué)復(fù)習(xí)備考策略講座
- 《網(wǎng)絡(luò)系統(tǒng)建設(shè)與運維》課件-第3章 路由技術(shù)
- 常用建筑類型疏散寬度計算表格
評論
0/150
提交評論