分析詳解放大器ch02_第1頁
分析詳解放大器ch02_第2頁
分析詳解放大器ch02_第3頁
分析詳解放大器ch02_第4頁
分析詳解放大器ch02_第5頁
已閱讀5頁,還剩75頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

OperationswithPropertiesOperationswithPropertiesofMatrixTheInverseofaElementaryApplicationsofMatrix2.1Operationswith2.1OperationswithDenotation:mna1nMamMDenotation:mna1nMamMa2nAaaaa3nMamnLain第i個列向量(rowvector):riaic1Lc第j個行向量(columnvectorc2McComm.,3A253ccc1123Rowr1A253ccc1123Rowr1 r25Columnccc123Comm.,4EqualityofTwomatricesA=[aij]andB=EqualityofTwomatricesA=[aij]andB=[bij]areequaliftheythesamesizem=bijfor1imand1jExampleA2B1,C3,DAandBarenotequalbecausetheyareofdifferentBandCarenotAandDareequalifandonlyifx=Comm.,5MatrixIfA=[aij]andB=[bij]arematricesofMatrixIfA=[aij]andB=[bij]arematricesofsizemn,A+B=[aij+ThesumoftwomatricesofdifferentsizesisExample31123210 01 0 3333 Comm.,6ScalarIfA=[aij]isanmnmatrixandcisacA=Example4ScalarIfA=[aij]isanmnmatrixandcisacA=Example4122010303220112AB1123646031313330313A3323220 32 03032042B1Comm.,7MatrixIfA=[aij]andB=[bij]areofthesamesize,A–MatrixIfA=[aij]andB=[bij]areofthesamesize,A–representsthesumofAand(1)B.ThatA–B=A+Example40303220112A12B103126460312 0 6403213AB3316 2 Comm.,8MatrixIfA=[aij]isanMatrixIfA=[aij]isanmnmatrixandB=[bij]isannpmatrix,thetheproductABisanmpmatrixAB=n aai2b2LkComm.,9AB[aij[bij]nSizeof c1pabbLLb1cccaaa2AB[aij[bij]nSizeof c1pabbLLb1cccaaa2nM22pMMMMMMciMMMMMbb3pLLMbnpMMMMMLLamnLLLncijkai1b1jai2b2LComm., ai ainb2jb3jExample4:FindingtheProductofTwoFindtheproductABExample4:FindingtheProductofTwoFindtheproductAB,32120BA45AB(4)(3)1610(4)(2)(2)(1)Comm.,TheoperationofmatrixadditionisTheoperationofTheoperationofmatrixadditionisTheoperationofmatrixmultiplicationisnotAandBCalculateA+BandB+CalculateABandBComm.,Example5:MatrixExample5:MatrixComm.,SystemsofLinear線性方程式系統(tǒng)之矩陣形a11x1a12La1nxnSystemsofLinear線性方程式系統(tǒng)之矩陣形a11x1a12La1nxnLa2nxnMa21a22ASystemofLinearxL xm1m maAx1 b1a2nx2b2M MMatrixMMx bamnn m=xbComm.,Example6:SolvingaSystemofLinearSolvethematrixequationAx=0,xExample6:SolvingaSystemofLinearSolvethematrixequationAx=0,x13 A,x and02x3Asasystemoflinear 00Augmented310012Comm.,Reducedrow-echelon70471Solutionx1=t,x2=(4/7)t,=tReducedrow-echelon70471Solutionx1=t,x2=(4/7)t,=t,tisanyreal1177x4411 tts4,t,s7x 7 x3 1t Comm.,PartitionedPartitioningthea14AAaaaa24A aa34a14r1APartitionedPartitioningthea14AAaaaa24A aa34a14r1Araaa242a34 a14 Acaacc123424a34Comm.,LinearAxx1 a2nx2b2MMMMLinearAxx1 a2nx2b2MMMMxbaamnnnma11x1a12La1nb1a21x1a22b2L MM bxxLxm1 n mm a11 b1Lxa21b212nMMMM bm1m2mnmAxx1a1x2a2LxnanComm.,Thea11a1nbxa21Thea11a1nbxa21LxxLx12n MMM m1m2mniscalledalinearcombinationofthecolumnmatricesa2,…,anwithcoefficientsx1,x2,…,Comm.,Example7:SolvingaSystemsofLinearThelinearx1Example7:SolvingaSystemsofLinearThelinearx12x23x34x15x27x18x2Matrix3x1258 6x2x14x25x36 9x3UsingGaussianelimination,thissystemhasaninfinitenumberofsolutions,oneofwhichisx1=1,x2=1,x3=Comm.,bcanbeexpressedasalinearcombinationbcanbeexpressedasalinearcombinationoftheof31415(1)Comm.,2.2PropertiesofMatrix2.2PropertiesofMatrixPropertiesMatrixAdditionandScalarTheoremIfA,B,andPropertiesMatrixAdditionandScalarTheoremIfA,B,andCaremnmatricesandcanddarescalars,A+B=B+Commutativepropertyofaddition(加法交換律A+(B+C)=(A+B)+Associativepropertyofaddition(加法結(jié)合律(cd)A=c(dA)1A=Ac(A+B)=cA+(分配律Distributive(c+d)A=cA+(分配律Comm.,Comm.,Comm.,ZeroIfAisZeroIfAisanmnmatrixandOmnisanmnmatrixconsistingentirelyofzeros,thenA+Omn=ThematrixOmniscalledazeroThematrixOmnistheadditiveidentity加法單位矩陣forthesetofallmnmatricesComm.,PropertiesofZeroTheoremPropertiesofZeroTheoremIfAisanmnmatrixandcisascalar,A+Omn=A+(A)=IfcA=Omn,thenc=0orA=AistheadditiveinverseofComm.,Example2:SolvingaMatrixSolveforXintheequation3X+A=BExample2:SolvingaMatrixSolveforXintheequation3X+A=BA3X+A–A=B–A3X=B–(1/3)3X=(1/3)(B–A)X=(1/3)(B–61214X3 3222 3Comm.,PropertiesofMatrixTheoremIfPropertiesofMatrixTheoremIfA,B,andCarematricesandcisascalar,A(BC)=Associativepropertyofmultiplication(乘法結(jié)合律A(B+C)=AB+Distributiveproperty(分配律(A+B)C=AC+Distributiveproperty(分配律c(AB)=(cA)B=乘法交換律不成立消去法不成立IfAC=BC,itisnotnecessarilytruethatA=Comm.,Comm.,Comm.,Example3:MatrixMultiplicationIsAssociativeFindthematrixproductABCbygroupingthefactorsfirstas(AB)CExample3:MatrixMultiplicationIsAssociativeFindthematrixproductABCbygroupingthefactorsfirstas(AB)CandthenasA(BC),andshowthatthesameresultis10142013212CAB1321Comm.,Example4:NoncommutativityofMatrixShowthatABandBAarenotequalforExample4:NoncommutativityofMatrixShowthatABandBAarenotequalfortheAB111AB BA3 ABComm.,Example5:AnExampleinWhichCancellationIsNotValidShowthatAC=BCforthefollowingExample5:AnExampleinWhichCancellationIsNotValidShowthatAC=BCforthefollowingABC12AC1 4 2BC 2 ThusAC=BC,andyetAComm.,IdentityTheidentitymatrixisasquarematrixthathas1’sonmaindiagonalIdentityTheidentitymatrixisasquarematrixthathas1’sonmaindiagonaland0’s010M0001M0LThematrixInistheidentityformatrixmultiplicationThematrixIniscalledtheidentitymatrixofordern010I1II3Comm.,PropertiesoftheIdentityTheoremPropertiesoftheIdentityTheoremIfAisamatrixofsizemn,AIn=ImA=IfAisasquarematrixofordern,thenAIn=InAAComm.,PropertiesoftheIdentityExample6:MultiplicationbyanIdentity201PropertiesoftheIdentityExample6:MultiplicationbyanIdentity201233044101002 20 1 114 4Comm.,RepeatedMultiplicationofSquareIfAisasquareRepeatedMultiplicationofSquareIfAisasquarematrixandjandkarepositiveintegers,=A2==AjAk=(Aj)k==Comm.,Example7:RepeatedMultiplicationofaSquareFindA3fortheExample7:RepeatedMultiplicationofaSquareFindA3fortheA 2121 0313Comm.,TransposeofaIfAisthemnmatrixgivenAMaMMTransposeofaIfAisthemnmatrixgivenAMaMMamnmthenthetranspose,denotedbyAT,isthenmmatrixgivenam1aam2MMamnComm., AsquarematrixAsquarematrixAiscalledsymmetricifA=AlsoifAaijisasymmetricmatrix對稱矩陣foralliaij=Comm.,Example8:TheTransposeofaA2Example8:TheTransposeofaA236900114BC789001258210456210D021110124,1 TComm.,PropertiesofTheoremIfAandPropertiesofTheoremIfAandBarematricesandcisascalar,(AT)T=(A+B)T=AT+(cA)T==Comm.,(AB)T=LLLLc1paLLbbb1cccaaa2nM2p2MMMMMciMMMCMMbb3pLLMbnpMMMAMMLLamnL(AB)T=LLLLc1paLLbbb1cccaaa2nM2p2MMMMMciMMMCMMbb3pLLMbnpMMMAMMLLamnLLLBccaabn2cm2am2MMMMMaacLLcmj12MMMMMbMbMMMLLamnLbcLcLc223jthrow,ithComm., b1 2 3 aaiMa ai ainb2jb3jExample9:FindingtheTransposeofaShowthatExample9:FindingtheTransposeofaShowthat(AB)TandBTATareequalforthefollowing231B110103232A0Comm.,Example10:TheProductofaMatrixandItsForthe312Example10:TheProductofaMatrixandItsForthe3121A FindtheproductAATandshowthatitis52542311320T201Because(AAT)T=AAT,soAATisComm.,2.3TheInverseof2.3TheInverseofaAnInverseofaMatrixAnInverseofaMatrix反矩陣AnnnmatrixAisinvertible(ornonsingular)ifthereexistsannnmatrixBsuchthatAB=BA=whereInistheidentitymatrixoforderThematrixBiscalledthe(multiplicative)inverseofAmatrixdoesnothaveaninverseiscallednoninvertible(orsingular)TheinverseofAisdenotedbyComm.,UniquenessofanInverseUniquenessofanInverseTheoremIfAisaninvertiblematrix,thenitsinverseisAssumethatBandCaretheinversesofAandBABIC(AB)CI(CA)BCIBBConsequentlyB=C,anditfollowsthattheinverseofamatrixisComm.,Example1:TheInverseofaShowExample1:TheInverseofaShowthatBistheinverseofA,21A2111BComm.,FindingtheInverseofaExampleFindtheinverseoftheATofindtheinverseofA,trytosolvetheFindingtheInverseofaExampleFindtheinverseoftheATofindtheinverseofA,trytosolvethematrixequationAX=4x224x1211x22x123x221001 x123Xx221Comm.,UsingGauss-JordanEliminationtoFindtheInverseMatrixExample 10 UsingGauss-JordanEliminationtoFindtheInverseMatrixExample 10 M1M0444MMM0M1110M1 410411MM01 141A1X1Comm.,FindingtheInverseofaFindingtheInverseofaMatrixbyGauss-JordanLetAbeasquarematrixoforder[A|[A|I][I|CheckthatAA–1=I=Comm.,Example3:FindingtheInverseofaExample3:FindingtheInverseofaFindtheinverseofthefollowing020131A1Comm.,Example4:ASingularShowthattheExample4:ASingularShowthatthefollowingmatrixhasno022231A3Comm.,Example5:FindingtheInverseofa2Example5:FindingtheInverseofa22Ifpossible,findtheinverseofthefollowing1212 AB32Comm.,PropertiesofTheoremIfAisanPropertiesofTheoremIfAisaninvertiblematrix,kisapositiveinteger,andcisascalar,then=(Ak)–1=A–1=·(cA)–1=(1/c)A–1,c(AT)–1=Comm.,Comm.,Comm.,Example6:TheInverseoftheSquareofaExample6:TheInverseoftheSquareofaMatrixComputeA–2intwodifferentwaysandshowthattheresultsareequalA===Comm.,TheInverseofaTheoremTheInverseofaTheoremIfAandBareinvertiblematricesofordern,thenABinvertibleand=(AB)(B–1A–1)=A(BB–1)A–1==(AI)A–1==Comm.,CancellationTheoremIfCisCancellationTheoremIfCisaninvertiblematrix,thenthefollowingpropertiesIfAC=BC,thenA=RightcancellationIfCA=CB,thenA=LeftcancellationIfCisnotinvertible,thencancellationisnotusuallyComm.,SystemsofEquationswithSystemsofEquationswithUniqueTheorem2.11:SystemsofEquationswithUniqueIfAisaninvertiblematrix,thenthesystemoflinearAx=bhasauniquesolutiongivenx=Ax=bA–1Ax=A–1bIx=A–1bx=Comm.,Example8:SolvingaSystemofEquationsExample8:SolvingaSystemofEquationsUsinganInverseMatrixUseaninversematrixtosolvethefollowing2x3yz2x3yz43x3yz2x4yz2x3yz03x3yz2x4yz3x3yz12x4yzComm.,2.4Elementary2.4ElementaryElementaryAnnElementaryAnnnmatrixiscalledanelementarymatrixifitcanbeobtainedfromtheidentitymatrixInbyasingleelementaryrowoperationComm.,Example1:ElementaryMatricesandNonelementaryMatricesWhichofthefollowingmatricesareelementary?Forthosethatare,describethecorrespondingelementaryrowoperationExample1:ElementaryMatricesandNonelementaryMatricesWhichofthefollowingmatricesareelementary?Forthosethatare,describethecorrespondingelementaryrowoperation001010000003001000010001100010201Comm.,Example2:ElementaryMatricesandElementaryRowOperations001220210Example2:ElementaryMatricesandElementaryRowOperations00122021042210004611 10001200100131 61 103063121001 401111533111101001035 Comm.,RepresentingElementaryRowRepresentingElementaryRowTheoremLetEbetheelementarymatrixobtainedbyperforminganelementaryrowoperationonIm.IfthatsomeelementaryrowoperationisperformedonanmnmatrixA,thentheresultingmatrixisgivenbytheproductComm.,Example3:UsingElementaryFindasequenceofelementarymatricesthatcanbeusedtowritethefollowingmatrixinrow-echelonformAExample3:UsingElementaryFindasequenceofelementarymatricesthatcanbeusedtowritethefollowingmatrixinrow-echelonformA1302R11103020321002E1A R3+(2)R1110001003203215A2E20 Comm.,(2)R30010(2)R3001010 5 5032031A3E3A20110B=2Comm.,RowLetAandRowLetAandBbemnmatrices.MatrixBisrow-equivalentAifthereexistsafinitenumberofelementarymatricesE1,E2,…,EksuchthatB=Comm.,ElementaryMatricesAreTheoremIfEisanelementarymatrix,thenE–1existsandisanelementarymatrixElementaryMatricesAreTheoremIfEisanelementarymatrix,thenE–1existsandisanelementarymatrix100010010100(R(RE)E)11211210(RR(R(a)RREE0123132313 01001aR3R3(aR3R3(01Comm.,PropertyofInvertibleTheoremAsquarematrixPropertyofInvertibleTheoremAsquarematrixAisinvertibleifandonlyifitcanbewrittenastheproductofelementarymatrices先假設(shè)AA為可逆假設(shè)A為可則AxO只有顯然解。(Theorem2.11)[A|O][I|O]EkE2E1A=A=E1–1·EComm.,Example4:WritingaMatrixastheProductofElementaryMatricesFindasequenceofelementarymatriceswhoseproduct2A38E1 E2Example4:WritingaMatrixastheProductofElementaryMatricesFindasequenceofelementarymatriceswhoseproduct2A38E1 E21A021 08E3012E102E4E3E2E1A1E1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論