阿壩黑水2023-2024學年八年級上學期期末數(shù)學強化卷(含答案)_第1頁
阿壩黑水2023-2024學年八年級上學期期末數(shù)學強化卷(含答案)_第2頁
阿壩黑水2023-2024學年八年級上學期期末數(shù)學強化卷(含答案)_第3頁
阿壩黑水2023-2024學年八年級上學期期末數(shù)學強化卷(含答案)_第4頁
阿壩黑水2023-2024學年八年級上學期期末數(shù)學強化卷(含答案)_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

絕密★啟用前阿壩黑水2023-2024學年八年級上學期期末數(shù)學強化卷考試范圍:八年級上冊(人教版);考試時間:120分鐘注意事項:1、答題前填寫好自己的姓名、班級、考號等信息2、請將答案正確填寫在答題卡上評卷人得分一、選擇題(共10題)1.(2022年春?宜興市校級月考)已知3×3a=315,則a的值為()A.5B.13C.14D.152.(2021?臺州)下列運算中,正確的是?(???)??A.??a2B.?(?-ab)C.??a5D.??a53.(2016?邵東縣一模)下列敘述正確的是()A.方差越大,說明數(shù)據(jù)就越穩(wěn)定B.有一個銳角相等的兩個直角三角形相似C.在不等式兩邊同乘以或同除以一個不為0的數(shù)時,不等號的方向不變D.兩邊及其一邊的對角對應相等的兩個三角形全等4.已知a+b=50,則a3+150ab+b3的值是()A.125000B.125001C.125005D.1250505.(2022年春?南安市期中)在代數(shù)式3x+、、、中,分式有()A.4個B.3個C.2個D.1個6.(河北省石家莊市趙縣八年級(上)期中數(shù)學試卷)不是利用三角形穩(wěn)定性的是()A.三角形的紅領巾B.三角形房架C.自行車的三角形車架D.矩形門框的斜拉條7.(2022年秋?鄞州區(qū)期末)(2022年秋?鄞州區(qū)期末)尺規(guī)作圖作一個等于已知角的示意圖如圖,則要說明∠D′O′C′=∠DOC,需要證明△D′O′C′≌△DOC,則這兩個三角形全等的依據(jù)是()A.SSSB.SASC.ASAD.AAS8.設P1、P2、P3分別是以直角△ABC(C為直角)的邊AB、BC、CA為邊的正三角形,則P1的()為P2、P3的()之和.A.面積,面積B.周長,周長C.內角和,內角和D.AB邊上的高,BC與CA邊上的高9.(福建省泉州市晉江一中、華僑中學八年級(上)第十六周周考數(shù)學試卷)一個等腰三角形的頂角為110°,則底角是()A.10°B.30°C.40°D.35°10.下列命題正確的是:①對角線互相垂直且相等的平行四邊形是正方形;②平行四邊形、矩形、等邊三角形、正方形既是中心對稱圖形,也是軸對稱圖形;③旋轉和平移都不改變圖形的形狀和大?。虎艿捉鞘?5°的等腰梯形,高是h,則腰長是h.()評卷人得分二、填空題(共10題)11.當x時,分式的值為正.當整數(shù)x時,分式的值為整數(shù).12.(青島新版八年級(下)中考題單元試卷:第11章圖形的平移與旋轉(06))如,是塊完0°角的三角板,分別記作△C△′BC′,將兩塊三角板重疊在一起,設較長角邊的點為M,繞中M轉動上面的三角板ABC,使其直角頂點C恰好落在角板A′C斜邊A′B上當∠A=30°,AC=1時,此時兩直角頂點C、C′間距是______.13.(廣東省潮州市饒平縣八年級(上)期末數(shù)學試卷)若代數(shù)式的值等于0,則x=.14.(天津市和平區(qū)八年級(上)期中數(shù)學試卷)(1)如圖①,在邊長為1個單位長度的小正方形組成的網絡中,給出了格點△ABC(頂點是網絡線的交點)和點A1.畫出一個格點A1B1C1,使它與△ABC全等且A與A1是對應點;(2)如圖②,已知△ABC的三個頂點的坐標分別為A(-3,-3),B(-2,-1)C(-1,-2).①畫出△ABC關于x軸對稱的圖形;②點B關于y軸對稱的點的坐標為.15.(1)已知a2-ka+81是完全平方式,k=.(2)若x2-12x+k是完全平方式,k=.(3)若x2-mx+是完全平方式,k=.16.(江蘇省南京市雨花區(qū)梅山二中七年級(上)期末數(shù)學試卷)不改變分式的值,化簡:=.17.若關于x的方程+1=無解,則k的值為.18.(2020?菏澤)如圖,在菱形?OABC??中,?OB??是對角線,?OA=OB=2??,?⊙O??與邊?AB??相切于點?D??,則圖中陰影部分的面積為______.19.點P(1,2)關于原點的對稱點P′的坐標為;點P(-3,2)關于x軸對稱點P′的坐標是.20.(江蘇期末題)有一個角為120°的鈍角三角形中,另外兩個角的角平分線所夾的鈍角為()度.評卷人得分三、解答題(共7題)21.(2021?東西湖區(qū)模擬)在如圖的網格中建立平面直角坐標系,?ΔABC??的頂點坐標分別為?A(-5,-1)??,?B(3,3)??,?C(-2,3)??,僅用無刻度的直尺在給定網格中完成畫圖,畫圖過程用虛線表示,并回答下列問題:(1)直接寫出?ΔABC??的形狀;(2)畫出?ΔABC??關于?y??軸對稱的圖形△?A'B'C'??;(3)在(2)的基礎上,在?BB'??上畫出點?D??,使?∠B'AD=∠BAD??;(4)在(2)、(3)的基礎上,線段?AB'??和線段?A'B??存在一種特殊關系,即其中一條線段繞著某點旋轉一個角度可以得到另一條線段,直接寫出這個旋轉中心的坐標.22.如圖所示:點A和點C分別在射線BF和射線BE上運動(點A和點C不與點B重合),BF⊥BE,CD是∠ACB的平分線,AM是△ABC在頂點A處的外角平分線,AM的反向延長線與CD交于點D.試回答下列問題:(1)若∠ACB=30°,則∠D=______°,若∠ACB=70°,則∠D=______°(2)設∠ACD=x,用x表示∠MAC的度數(shù),則∠MAC=______°(3)試猜想,點A和點C在運動過程中,∠D的度數(shù)是否發(fā)生變化?若變化,請求出變化范圍;若不變,請給出證明.23.如圖①,等邊△ABC的兩邊上的點M,N滿足BM=AN,BN交CM于點E(1)求證:BM2=ME?MC;(2)如圖②,把△BCE沿著BC向下翻折到△BCF,延長CF和BF交A于P,交AC于K,若等邊△ABC的邊長是10,求BP?CK的值.24.(重慶市南開(融僑)中學九年級(下)段考數(shù)學試卷(一))(2022年春?開縣校級月考)如圖,我國某邊防哨所樹立了“祖國在我心中”建筑物,它的橫截面為四邊形BCNM,其中BC⊥CN,BM∥CN,建筑物頂上有一旗桿AB,士兵小明站在D處,由E點觀察到旗桿頂部A的仰角為52°,底部B的仰角為45°,已知旗桿AB=2.8米,DE=1.8米.(參考數(shù)據(jù):sin52°≈0.788,tan52°≈1.280)(1)求建筑物的高度BC;(2)建筑物長50米,背風坡MN的坡度i=1:0.5,為提高建筑物抗風能力,士兵們在背風坡填筑土石方加固,加固后建筑物頂部加寬4.2米,背風坡GH的坡度為i=1:1.5,施工10天后,邊防居民為士兵支援的機械設備終于到達,這樣工作效率提高到了原來的2倍,結果比原計劃提前20天完成加固任務,士兵們原計劃平均每天填筑土石方多少立方米?25.(遼寧省盤錦一中八年級(上)第三次月考數(shù)學試卷)計算:(1)(ab2)3÷ab2;(2)(9x4-15x2+6x)÷3x;(3)3x(2x+1)-(2x+3)(x-5);(4)÷()2;(5)(2m+3n-1)(2m-3n+1);(6)?.26.(2021?雨花區(qū)二模)如圖1,在圓?O??中,?AB=AC??,?∠ACB=75°??,點?E??在劣弧?AC??上運動,連接?EC??、?BE??,交?AC??于點?F??.(1)求?∠E??的度數(shù);(2)當點?E??運動到使?BE⊥AC??時,如圖2,連接?AO??并延長,交?BE??于點?G??,交?BC??于點?D??,交圓?O??于點?M??,求證:?D??為?GM??中點.27.(遼寧省大連二十九中八年級(上)期中數(shù)學模擬試卷(2))在Rt△ABC中,∠C=90°,∠B=2∠A,求∠B,∠A的度數(shù).參考答案及解析一、選擇題1.【答案】【解答】解:∵3×3a=31+a=315,∴a+1=15,∴a=14.故選C.【解析】【分析】根據(jù)同底數(shù)冪的乘法法則即同底數(shù)冪相乘,底數(shù)不變指數(shù)相加得出a+1=15,求出a的值即可.2.【答案】解:?A??、??a2??與?a??不是同類項,不能合并,故?B??、原式??=a2?b2?C??、原式??=a3??,故?D??、原式??=a7??,故故選:?C??.【解析】根據(jù)整式的加減運算法則以及乘法運算法則即可求出答案.本題考查整式的加減運算以及乘除運算,解題的關鍵是熟練運用加減運算法則以及乘除運算法則,本題屬于基礎題型.3.【答案】【解答】解:A、方差越小,說明數(shù)據(jù)就越穩(wěn)定,故本選項錯誤;B、有一個銳角相等的兩個直角三角形相似,故本選項正確;C、在不等式兩邊同乘以或同除以一個正數(shù)時,不等號的方向不變,故本選項錯誤;D、兩邊及其夾角對應相等的兩個三角形全等,故本選項錯誤;故選B.【解析】【分析】根據(jù)方差的意義、相似三角形的判定、不等式的性質和全等三角形的判定分別進行分析,即可得出答案.4.【答案】【解答】解:∵a+b=50,∴a3+b3=(a+b)(a2-ab+b2)=50(a2-ab+b2),∴a3+150ab+b3=50a2+100ab+50b2=50(a+b)2=125000.故選A.【解析】【分析】先將a3+b3利用立方公式進行分解,然后將a+b=50代入后與150ab合并,繼而根據(jù)a+b=50可得出答案.5.【答案】【解答】解:由分式的定義可知,,是分式.故選:C.【解析】【分析】根據(jù)分母中含有字母的式子為分式,即可解答.6.【答案】【解答】解:三角形房架、自行車的三角形車架、矩形門框的斜拉條都是利用的三角形的穩(wěn)定性,三角形的紅領巾不是利用的三角形的穩(wěn)定性.故選A.【解析】【分析】根據(jù)三角形具有穩(wěn)定性解答.7.【答案】【解答】解:如圖,在△D′O′C′與△DOC中,,∴△D′O′C′≌△DOC(SSS),∴∠D′O′C′=∠DOC,故選A.【解析】【分析】如圖,證明△D′O′C′≌△DOC,得到∠D′O′C′=∠DOC,即可解決問題.8.【答案】【解答】解:∵P1、P2、P3分別是以直角△ABC(C為直角)的邊AB、BC、CA為邊的正三角形,∴三角形P1的面積=AB2sin60°,三角形P2的面積=BC2sin60°,三角形P3的面積=AC2sin60°,∵△ABC為直角三角形,∴AB2=BC2+AC2,∴P1的面積為P2、P3的面積之和,故選A.【解析】【分析】首先根據(jù)P1、P2、P3分別是以直角△ABC(C為直角)的邊AB、BC、CA為邊的正三角形,分別求出三角形P1的面積=AB2sin60°,三角形P2的面積=BC2sin60°,三角形P3的面積=AC2sin60°,在直角三角形中,利用勾股定理可得AB2=BC2+AC2,于是得到P1的面積為P2、P3的面積之和.9.【答案】【解答】解:∵等腰三角形的頂角為110°,∴底角=(180°-110°)=35°,故選D.【解析】【分析】根據(jù)等腰三角形的性質和三角形的內角和即可得到結論.10.【答案】①、根據(jù)正方形的判定方法,正確;②、其中的等邊三角形不是中心對稱圖形,錯誤;③、根據(jù)旋轉和平移的性質,正確;④、根據(jù)等腰直角三角形的斜邊是直角邊的倍,正確;⑤、如等腰梯形,錯誤.故選D.【解析】二、填空題11.【答案】【解答】解:當2x+1<0時,分式的值為正.解得:x<-;當整數(shù)x-3=1或x-3=-1或x-3=5或x-3=-5時,分式的值為整數(shù),解得:x=4或2或8或-2.故答案為:<-;=4或2或8或-2.【解析】【分析】直接利用分式的分子符號確定其分母的符號,進而得出答案,再利用整數(shù)的定義得出x的值.12.【答案】5【解析】解:接C′,∵兩塊三角板重在一起,長角邊的中為M,∴CMA′M=CM=?1∴C′C==5,∴M是ACA′′的中點C=A′C′,∴C′長為5.∴′∠A′CM=30°,填:5.此題連接′,根據(jù)M是、AC′的中點,AC=′C′,得出C=′M=CM=?1本題考旋轉的性質要與殊三角形的性質與判相結合.13.【答案】【解答】解:由題意可得:x2-9=0且2x-6≠0,解得x=-3,故答案為:-3.【解析】【分析】分式的值為0的條件是:(1)分子為0;(2)分母不為0.兩個條件需同時具備,缺一不可.據(jù)此可以解答本題.14.【答案】【解答】解:(1)如圖①所示;(2)①如圖②所示;②由圖可知,B″(2,1).故答案為(2,1).【解析】【分析】(1)根據(jù)圖形平移的性質畫出△A1B1C1即可;(2)①根據(jù)關于x軸對稱的點的坐標特點畫出△ABC關于x軸對稱的圖形;②找出點B關于y軸對稱的點,寫出其坐標即可.15.【答案】【解答】解:(1)∵a2-ka+81是完全平方式,∴△=k2-4×81=0,解得:k=±18,故答案為:±18.(2)∵x2-12x+k是完全平方式,∴△=122-4k=0,解得:k=36,故答案為:36.(3)∵x2-mx+是完全平方式,∴△=m2-4×=0,解得:m=±3,故答案為:±3.【解析】【分析】根據(jù)完全平方式的△等于0的規(guī)律,套入數(shù)據(jù),即可求得.16.【答案】【解答】解:=,故答案為:.【解析】【分析】根據(jù)分式分子分母都乘以(或除以)同一個不為零的數(shù),分式的值不變,可得答案.17.【答案】【解答】解:去分母,得:k+x-1=1,由分式方程無解可得x=1,把x=1代入整式方程,得:k=1,故答案為:1.【解析】【分析】分式方程去分母轉化為整式方程,由分式方程無解,得到最簡公分母為0求出x的值,代入整式方程計算即可求出k的值.18.【答案】解:連接?OD??,?∵?四邊形?OABC??為菱形,?∴OA=AB??,?∵OA=OB??,?∴OA=OB=AB??,?∴ΔOAB??為等邊三角形,?∴∠A=∠AOB=60°??,?∵AB??是?⊙O??的切線,?∴OD⊥AB??,?∴OD=OA·sinA=3同理可知,?ΔOBC??為等邊三角形,?∴∠BOC=60°??,?∴??圖中陰影部分的面積?=2×3故答案為:?23【解析】連接?OD??,根據(jù)菱形的性質得到?OA=AB??,得到?ΔOAB??為等邊三角形,根據(jù)切線的性質得到?OD⊥AB??,根據(jù)余弦的定義求出?OD??,根據(jù)菱形面積公式、扇形面積公式計算,得到答案.本題考查的是切線的性質、扇形面積計算、等邊三角形的判定和性質,掌握切線的性質定理、扇形面積公式是解題的關鍵.19.【答案】【解答】解:點P(1,2)關于原點的對稱點P′的坐標為(-1,-2);點P(-3,2)關于x軸對稱點P′的坐標是(-3,-2),故答案為:(-1,-2);(-3,-2).【解析】【分析】根據(jù)兩個點關于原點對稱時,它們的坐標符號相反;關于x軸對稱點的坐標特點:橫坐標不變,縱坐標互為相反數(shù)可得答案.20.【答案】150【解析】三、解答題21.【答案】解:?(l)∵CA=?32+?∴CA=CB??,?∴ΔABC??是等腰三角形;(2)如圖,△?A'B'C′??為所作;(3)如圖,點?D??為所作;(4)這個旋轉中心的坐標為?(0,-1)??或?(0,9)??.【解析】(1)利用勾股定理計算出?CA??,然后根據(jù)三角形分類確定?ΔABC??的形狀;(2)利用關于?y??軸對稱的點的坐標特征寫出?A′??、?B′??、?C′??的坐標,然后描點即可;(3)在?AB??上找出格點?E??使?AE=AB′??,再利用網格特點確定?EB′??的中點,然后根據(jù)等腰三角形的性質畫出?∠B′AB??的平分線得到?D??點;(4)利用?AB′??與?A′B??關于?y??軸對稱,則它們的延長線的交點為旋轉中心,或作?AB′??與?A′B??的垂直平分線,兩垂直平分線的交點為旋轉中心.本題考查了作圖?-??軸對稱變換:幾何圖形都可看做是由點組成,我們在畫一個圖形的軸對稱圖形時,也是先從確定一些特殊的對稱點開始的.22.【答案】(1)∵CD是∠ACB的平分線,∴∠ACD=∠ACB,∵AM是△ABC在頂點A處的外角平分線,∴∠MAC=∠FAC,根據(jù)三角形外角性質,∠MAC=∠ACD+∠D,∠FAC=∠ACB+∠ABC,∴∠ACD+∠D=(∠ACB+∠ABC),∴∠ACB+∠D=∠ACB+∠ABC,∠D=∠ABC,∵BF⊥BE,∴∠ABC=90°,∴∠D=×90°=45°,即∠D的大小與∠ACB無關,等于∠ABC,當∠ACB=30°,∠D=45°,∠ACB=70°,∠D=45°;(2)根據(jù)(1)∠D=45°,∵∠ACD=x,∴在△ACD中,∠MAC=∠ACD+∠D=(45+x)°;(3)不變.理由如下:∵CD是∠ACB的平分線,∴∠ACD=∠ACB,∵AM是△ABC在頂點A處的外角平分線,∴∠MAC=∠FAC,根據(jù)三角形外角性質,∠MAC=∠ACD+∠D,∠FAC=∠ACB+∠ABC,∴∠ACD+∠D=(∠ACB+∠ABC),∴∠ACB+∠D=∠ACB+∠ABC,∠D=∠ABC,∵BF⊥BE,∴∠ABC=90°,∴∠D=×90°=45°.故答案為:(1)45,45;(2)(45+x).【解析】23.【答案】【解答】(1)證明:如圖①中,∵△ABC是等邊三角形,∴AB=AC,∠A=∠CBM=60°,在△ABN和△BCM中,,∴△ABN≌△BCM,∴∠ABN=∠BCM,又∵∠BME=∠CBM,∴△BEM∽△CBM,∴=,即BM2=ME?MC.(2)解:如圖②中,∵△BCF是由△BCE翻折,∴∠NBC=∠KBC,∠MCB=∠PCB,∵∠ABN=∠BCM,∴∠ABN=∠BCM=∠PCB,∵∠ABN+∠NBC=60°,∠PCB+∠BPC=60°,∴∠BPC=∠NBC=∠KBC,∴△PCB∽△BCK,∴=,∴PB?CK=BC2=100【解析】【分析】(1)先證明△ABN≌△BCM,再證明△BEM∽△CBM即可.(2)只要證明△PCB∽△BCK得=,由此即可解決問題.24.【答案】【解答】解:(1)如圖所示:過點E作EF⊥BF交BC于點F,設EF=x,則EF=x,則根據(jù)題意可得:BF=x,同理可知tan∠AEF==≈1.28,解得:x=10,即BC=10+1.8=11.8(m).答:建筑物的高度BC為11.8m;(2)如圖所示:過點M,G分別作MQ、GP垂直于CN,交CN于點Q、P,根據(jù)題意可得:PH=11.8×1.5=17.7(m),QN=5.9(m),可得:NH=17.7-5.9+4.2=11.8(m),故可得加固所需土石方為:(MG+NH)×PG=×11.8×(4.2+16)×50=5959,則根據(jù)題意可列方程:設原方程每天填筑土石方a立方米,=20+,解得:a=198.答:士兵們原計劃平均每天填筑土石方198立方米.【解析】【分析】(1)根據(jù)題意得出EF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論