廈門六中2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第1頁
廈門六中2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第2頁
廈門六中2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第3頁
廈門六中2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第4頁
廈門六中2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

廈門六中2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.閱讀下側(cè)程序框圖,為使輸出的數(shù)據(jù)為31,則①處應(yīng)填的數(shù)字為A.4 B.5 C.6 D.72.一輛郵車從地往地運(yùn)送郵件,沿途共有地,依次記為,,…(為地,為地).從地出發(fā)時(shí),裝上發(fā)往后面地的郵件各1件,到達(dá)后面各地后卸下前面各地發(fā)往該地的郵件,同時(shí)裝上該地發(fā)往后面各地的郵件各1件,記該郵車到達(dá),,…各地裝卸完畢后剩余的郵件數(shù)記為.則的表達(dá)式為().A. B. C. D.3.已知集合,將集合的所有元素從小到大一次排列構(gòu)成一個(gè)新數(shù)列,則()A.1194 B.1695 C.311 D.10954.設(shè)等差數(shù)列的前項(xiàng)和為,若,則()A.23 B.25 C.28 D.295.已知雙曲線的左、右頂點(diǎn)分別為,點(diǎn)是雙曲線上與不重合的動點(diǎn),若,則雙曲線的離心率為()A. B. C.4 D.26.設(shè),,,則()A. B. C. D.7.已知復(fù)數(shù)滿足,且,則()A.3 B. C. D.8.已知展開式中第三項(xiàng)的二項(xiàng)式系數(shù)與第四項(xiàng)的二項(xiàng)式系數(shù)相等,,若,則的值為()A.1 B.-1 C.8l D.-819.已知雙曲線:(,)的右焦點(diǎn)與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.310.已知集合,,則中元素的個(gè)數(shù)為()A.3 B.2 C.1 D.011.已知六棱錐各頂點(diǎn)都在同一個(gè)球(記為球)的球面上,且底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.12.已知函數(shù)的部分圖象如圖所示,將此圖象分別作以下變換,那么變換后的圖象可以與原圖象重合的變換方式有()①繞著軸上一點(diǎn)旋轉(zhuǎn);②沿軸正方向平移;③以軸為軸作軸對稱;④以軸的某一條垂線為軸作軸對稱.A.①③ B.③④ C.②③ D.②④二、填空題:本題共4小題,每小題5分,共20分。13.直線xsinα+y+2=0的傾斜角的取值范圍是________________.14.已知數(shù)列滿足,且,則______.15.已知f(x)為偶函數(shù),當(dāng)x≤0時(shí),f(x)=e-x-1-x,則曲線y=f(x)16.已知數(shù)列的前項(xiàng)和為,且滿足,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)百年大計(jì),教育為本.某校積極響應(yīng)教育部號召,不斷加大拔尖人才的培養(yǎng)力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長班進(jìn)行專項(xiàng)培訓(xùn).據(jù)統(tǒng)計(jì)有如下表格.(其中表示通過自主招生獲得降分資格的學(xué)生人數(shù),表示被清華、北大等名校錄取的學(xué)生人數(shù))年份(屆)2014201520162017201841495557638296108106123(1)通過畫散點(diǎn)圖發(fā)現(xiàn)與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(保留兩位有效數(shù)字)(2)若已知該校2019年通過自主招生獲得降分資格的學(xué)生人數(shù)為61人,預(yù)測2019年高考該校考人名校的人數(shù);(3)若從2014年和2018年考人名校的學(xué)生中采用分層抽樣的方式抽取出5個(gè)人回校宣傳,在選取的5個(gè)人中再選取2人進(jìn)行演講,求進(jìn)行演講的兩人是2018年畢業(yè)的人數(shù)的分布列和期望.參考公式:,參考數(shù)據(jù):,,,18.(12分)已知,,分別為內(nèi)角,,的對邊,且.(1)證明:;(2)若的面積,,求角.19.(12分)在△ABC中,角所對的邊分別為向量,向量,且.(1)求角的大??;(2)求的最大值.20.(12分)在孟德爾遺傳理論中,稱遺傳性狀依賴的特定攜帶者為遺傳因子,遺傳因子總是成對出現(xiàn)例如,豌豆攜帶這樣一對遺傳因子:使之開紅花,使之開白花,兩個(gè)因子的相互組合可以構(gòu)成三種不同的遺傳性狀:為開紅花,和一樣不加區(qū)分為開粉色花,為開白色花.生物在繁衍后代的過程中,后代的每一對遺傳因子都包含一個(gè)父系的遺傳因子和一個(gè)母系的遺傳因子,而因?yàn)樯臣?xì)胞是由分裂過程產(chǎn)生的,每一個(gè)上一代的遺傳因子以的概率傳給下一代,而且各代的遺傳過程都是相互獨(dú)立的.可以把第代的遺傳設(shè)想為第次實(shí)驗(yàn)的結(jié)果,每一次實(shí)驗(yàn)就如同拋一枚均勻的硬幣,比如對具有性狀的父系來說,如果拋出正面就選擇因子,如果拋出反面就選擇因子,概率都是,對母系也一樣.父系?母系各自隨機(jī)選擇得到的遺傳因子再配對形成子代的遺傳性狀.假設(shè)三種遺傳性狀,(或),在父系和母系中以同樣的比例:出現(xiàn),則在隨機(jī)雜交實(shí)驗(yàn)中,遺傳因子被選中的概率是,遺傳因子被選中的概率是.稱,分別為父系和母系中遺傳因子和的頻率,實(shí)際上是父系和母系中兩個(gè)遺傳因子的個(gè)數(shù)之比.基于以上常識回答以下問題:(1)如果植物的上一代父系?母系的遺傳性狀都是,后代遺傳性狀為,(或),的概率各是多少?(2)對某一植物,經(jīng)過實(shí)驗(yàn)觀察發(fā)現(xiàn)遺傳性狀具有重大缺陷,可人工剔除,從而使得父系和母系中僅有遺傳性狀為和(或)的個(gè)體,在進(jìn)行第一代雜交實(shí)驗(yàn)時(shí),假設(shè)遺傳因子被選中的概率為,被選中的概率為,.求雜交所得子代的三種遺傳性狀,(或),所占的比例.(3)繼續(xù)對(2)中的植物進(jìn)行雜交實(shí)驗(yàn),每次雜交前都需要剔除性狀為的個(gè)體假設(shè)得到的第代總體中3種遺傳性狀,(或),所占比例分別為.設(shè)第代遺傳因子和的頻率分別為和,已知有以下公式.證明是等差數(shù)列.(4)求的通項(xiàng)公式,如果這種剔除某種遺傳性狀的隨機(jī)雜交實(shí)驗(yàn)長期進(jìn)行下去,會有什么現(xiàn)象發(fā)生?21.(12分)等差數(shù)列中,.(1)求的通項(xiàng)公式;(2)設(shè),記為數(shù)列前項(xiàng)的和,若,求.22.(10分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若對任意都有,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】考點(diǎn):程序框圖.分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)求S的值,我們用表格列出程序運(yùn)行過程中各變量的值的變化情況,不難給出答案.解:程序在運(yùn)行過程中各變量的值如下表示:Si是否繼續(xù)循環(huán)循環(huán)前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后當(dāng)i<5時(shí)退出,故選B.2、D【解析】

根據(jù)題意,分析該郵車到第站時(shí),一共裝上的郵件和卸下的郵件數(shù)目,進(jìn)而計(jì)算可得答案.【詳解】解:根據(jù)題意,該郵車到第站時(shí),一共裝上了件郵件,需要卸下件郵件,則,故選:D.【點(diǎn)睛】本題主要考查數(shù)列遞推公式的應(yīng)用,屬于中檔題.3、D【解析】

確定中前35項(xiàng)里兩個(gè)數(shù)列中的項(xiàng)數(shù),數(shù)列中第35項(xiàng)為70,這時(shí)可通過比較確定中有多少項(xiàng)可以插入這35項(xiàng)里面即可得,然后可求和.【詳解】時(shí),,所以數(shù)列的前35項(xiàng)和中,有三項(xiàng)3,9,27,有32項(xiàng),所以.故選:D.【點(diǎn)睛】本題考查數(shù)列分組求和,掌握等差數(shù)列和等比數(shù)列前項(xiàng)和公式是解題基礎(chǔ).解題關(guān)鍵是確定數(shù)列的前35項(xiàng)中有多少項(xiàng)是中的,又有多少項(xiàng)是中的.4、D【解析】

由可求,再求公差,再求解即可.【詳解】解:是等差數(shù)列,又,公差為,,故選:D【點(diǎn)睛】考查等差數(shù)列的有關(guān)性質(zhì)、運(yùn)算求解能力和推理論證能力,是基礎(chǔ)題.5、D【解析】

設(shè),,,根據(jù)可得①,再根據(jù)又②,由①②可得,化簡可得,即可求出離心率.【詳解】解:設(shè),,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.【點(diǎn)睛】本題考查雙曲線的方程和性質(zhì),考查了斜率的計(jì)算,離心率的求法,屬于基礎(chǔ)題和易錯(cuò)題.6、A【解析】

先利用換底公式將對數(shù)都化為以2為底,利用對數(shù)函數(shù)單調(diào)性可比較,再由中間值1可得三者的大小關(guān)系.【詳解】,,,因此,故選:A.【點(diǎn)睛】本題主要考查了利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小,屬于基礎(chǔ)題.7、C【解析】

設(shè),則,利用和求得,即可.【詳解】設(shè),則,因?yàn)?則,所以,又,即,所以,所以,故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的乘法法則的應(yīng)用,考查共軛復(fù)數(shù)的應(yīng)用.8、B【解析】

根據(jù)二項(xiàng)式系數(shù)的性質(zhì),可求得,再通過賦值求得以及結(jié)果即可.【詳解】因?yàn)檎归_式中第三項(xiàng)的二項(xiàng)式系數(shù)與第四項(xiàng)的二項(xiàng)式系數(shù)相等,故可得,令,故可得,又因?yàn)?,令,則,解得令,則.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式系數(shù)的性質(zhì),以及通過賦值法求系數(shù)之和,屬綜合基礎(chǔ)題.9、A【解析】

由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因?yàn)閳A被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點(diǎn)睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關(guān)系,考查學(xué)生的運(yùn)算能力,是一道容易題.10、C【解析】

集合表示半圓上的點(diǎn),集合表示直線上的點(diǎn),聯(lián)立方程組求得方程組解的個(gè)數(shù),即為交集中元素的個(gè)數(shù).【詳解】由題可知:集合表示半圓上的點(diǎn),集合表示直線上的點(diǎn),聯(lián)立與,可得,整理得,即,當(dāng)時(shí),,不滿足題意;故方程組有唯一的解.故.故選:C.【點(diǎn)睛】本題考查集合交集的求解,涉及圓和直線的位置關(guān)系的判斷,屬基礎(chǔ)題.11、D【解析】

由題意,得出六棱錐為正六棱錐,求得,再結(jié)合球的性質(zhì),求得球的半徑,利用表面積公式,即可求解.【詳解】由題意,六棱錐底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因?yàn)?,所以,設(shè)外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.【點(diǎn)睛】本題主要考查了正棱錐的幾何結(jié)構(gòu)特征,以及外接球的表面積的計(jì)算,其中解答中熟記幾何體的結(jié)構(gòu)特征,熟練應(yīng)用球的性質(zhì)求得球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及推理與計(jì)算能力,屬于中檔試題.12、D【解析】

計(jì)算得到,,故函數(shù)是周期函數(shù),軸對稱圖形,故②④正確,根據(jù)圖像知①③錯(cuò)誤,得到答案.【詳解】,,,當(dāng)沿軸正方向平移個(gè)單位時(shí),重合,故②正確;,,故,函數(shù)關(guān)于對稱,故④正確;根據(jù)圖像知:①③不正確;故選:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)圖像判斷函數(shù)性質(zhì),意在考查學(xué)生對于三角函數(shù)知識和圖像的綜合應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】因?yàn)閟inα∈[-1,1],所以-sinα∈[-1,1],所以已知直線的斜率范圍為[-1,1],由傾斜角與斜率關(guān)系得傾斜角范圍是.答案:14、【解析】

數(shù)列滿足知,數(shù)列以3為公比的等比數(shù)列,再由已知結(jié)合等比數(shù)列的性質(zhì)求得的值即可.【詳解】,數(shù)列是以3為公比的等比數(shù)列,又,,.故答案為:.【點(diǎn)睛】本題考查了等比數(shù)列定義,考查了對數(shù)的運(yùn)算性質(zhì),考查了等比數(shù)列的通項(xiàng)公式,是中檔題.15、y=2x【解析】試題分析:當(dāng)x>0時(shí),-x<0,則f(-x)=ex-1+x.又因?yàn)閒(x)為偶函數(shù),所以f(x)=f(-x)=ex-1+x,所以f'【考點(diǎn)】函數(shù)的奇偶性、解析式及導(dǎo)數(shù)的幾何意義【知識拓展】本題題型可歸納為“已知當(dāng)x>0時(shí),函數(shù)y=f(x),則當(dāng)x<0時(shí),求函數(shù)的解析式”.有如下結(jié)論:若函數(shù)f(x)為偶函數(shù),則當(dāng)x<0時(shí),函數(shù)的解析式為y=-f(x);若f(x)為奇函數(shù),則函數(shù)的解析式為y=-f(-x).16、【解析】

對題目所給等式進(jìn)行賦值,由此求得的表達(dá)式,判斷出數(shù)列是等比數(shù)列,由此求得的值.【詳解】解:,可得時(shí),,時(shí),,又,兩式相減可得,即,上式對也成立,可得數(shù)列是首項(xiàng)為1,公比為的等比數(shù)列,可得.【點(diǎn)睛】本小題主要考查已知求,考查等比數(shù)列前項(xiàng)和公式,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)117人;(3)分布列見解析,【解析】

(1)首先求得和,再代入公式即可列方程,由此求得關(guān)于的線性回歸方程;(2)根據(jù)回歸直線方程計(jì)算公式,計(jì)算可得人數(shù);(3)和被選中的人數(shù)分別為2和3,利用超幾何分布分布列的計(jì)算公式,計(jì)算出的分布列,并求得數(shù)學(xué)期望.【詳解】(1)由題,所以線性回歸方程為(若第一問求出.)(2)當(dāng)時(shí),所以預(yù)測2019年高考該??既朊5娜藬?shù)約為117人(3)由題知和被選中的人數(shù)分別為2和3,進(jìn)行演講的兩人是2018年畢業(yè)的人數(shù)的所有可能取值為0,1,2,,的分布列為012【點(diǎn)睛】本小題主要考查平均數(shù)有關(guān)計(jì)算,考查回歸直線方程的計(jì)算,考查期望的計(jì)算,考查超幾何分布和數(shù)據(jù)處理能力,屬于中檔題.18、(1)見解析;(2)【解析】

(1)利用余弦定理化簡已知條件,由此證得(2)利用正弦定理化簡(1)的結(jié)論,得到,利用三角形的面積公式列方程,由此求得,進(jìn)而求得的值,從而求得角.【詳解】(1)由已知得,由余弦定理得,∴.(2)由(1)及正弦定理得,即,∴,∴,∴.,∴,,.【點(diǎn)睛】本小題主要考查余弦定理、正弦定理解三角形,考查三角形的面積公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查運(yùn)算求解能力,屬于中檔題.19、(1)(2)2【解析】

(1)轉(zhuǎn)化條件得,進(jìn)而可得,即可得解;(2)由化簡可得,由結(jié)合三角函數(shù)的性質(zhì)即可得解.【詳解】(1),,由正弦定理得,即,又,,又,,,由可得.(2)由(1)可得,,,,,,的最大值為2.【點(diǎn)睛】本題考查了平面向量平行、正弦定理以及三角恒等變換的應(yīng)用,考查了三角函數(shù)的性質(zhì),屬于中檔題.20、(1),(或),的概率分別是,,.(2)(3)答案見解析(4)答案見解析【解析】

(1)利用相互獨(dú)立事件的概率乘法公式即可求解.(2)利用相互獨(dú)立事件的概率乘法公式即可求解.(3)由(2)知,求出、,利用等差數(shù)列的定義即可證出.(4)利用等差數(shù)列的通項(xiàng)公式可得,從而可得,再由,利用式子的特征可得越來越小,進(jìn)而得出結(jié)論.【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論