




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江西省上饒市玉山一中等六校中學2023-2024學年高考沖刺數(shù)學模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,集合,則A. B.或C. D.2.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實數(shù)的取值范圍是A. B. C. D.3.函數(shù)fxA. B.C. D.4.已知復數(shù)滿足,則()A. B. C. D.5.函數(shù)的大致圖象為A. B.C. D.6.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.7.已知拋物線:()的焦點為,為該拋物線上一點,以為圓心的圓與的準線相切于點,,則拋物線方程為()A. B. C. D.8.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對于恒成立,則的取值范圍是A. B. C. D.9.在平面直角坐標系中,已知角的頂點與原點重合,始邊與軸的非負半軸重合,終邊落在直線上,則()A. B. C. D.10.如圖,這是某校高三年級甲、乙兩班在上學期的5次數(shù)學測試的班級平均分的莖葉圖,則下列說法不正確的是()A.甲班的數(shù)學成績平均分的平均水平高于乙班B.甲班的數(shù)學成績的平均分比乙班穩(wěn)定C.甲班的數(shù)學成績平均分的中位數(shù)高于乙班D.甲、乙兩班這5次數(shù)學測試的總平均分是10311.如圖,在底面邊長為1,高為2的正四棱柱中,點是平面內(nèi)一點,則三棱錐的正視圖與側(cè)視圖的面積之和為()A.2 B.3 C.4 D.512.設(shè)數(shù)列的各項均為正數(shù),前項和為,,且,則()A.128 B.65 C.64 D.63二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若對于任意正實數(shù),均存在以為三邊邊長的三角形,則實數(shù)k的取值范圍是_______.14.已知,,且,若恒成立,則實數(shù)的取值范圍是____.15.設(shè)為正實數(shù),若則的取值范圍是__________.16.已知集合,則_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若,求不等式的解集;(2)已知,若對于任意恒成立,求的取值范圍.18.(12分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)證明:19.(12分)已知數(shù)列的前項和為,且滿足.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)證明:.20.(12分)選修4-5:不等式選講已知函數(shù).(1)設(shè),求不等式的解集;(2)已知,且的最小值等于,求實數(shù)的值.21.(12分)如圖,四棱錐,側(cè)面是邊長為2的正三角形,且與底面垂直,底面是的菱形,為棱上的動點,且.(I)求證:為直角三角形;(II)試確定的值,使得二面角的平面角余弦值為.22.(10分)已知矩陣,二階矩陣滿足.(1)求矩陣;(2)求矩陣的特征值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由可得,解得或,所以或,又,所以,故選C.2、D【解析】
由題意得,表示不等式的解集中整數(shù)解之和為6.當時,數(shù)形結(jié)合(如圖)得的解集中的整數(shù)解有無數(shù)多個,解集中的整數(shù)解之和一定大于6.當時,,數(shù)形結(jié)合(如圖),由解得.在內(nèi)有3個整數(shù)解,為1,2,3,滿足,所以符合題意.當時,作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當時,實數(shù)的取值范圍是.故選D.3、A【解析】
由f12=e-14>0排除選項D;【詳解】由f12=e-14>0,可排除選項D,f-1=-e【點睛】本題通過對多個圖象的選擇考查函數(shù)的圖象與性質(zhì),屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點以及x→04、A【解析】
由復數(shù)的運算法則計算.【詳解】因為,所以故選:A.【點睛】本題考查復數(shù)的運算.屬于簡單題.5、A【解析】
因為,所以函數(shù)是偶函數(shù),排除B、D,又,排除C,故選A.6、B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進行調(diào)整.7、C【解析】
根據(jù)拋物線方程求得點的坐標,根據(jù)軸、列方程,解方程求得的值.【詳解】不妨設(shè)在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準線相切于點,根據(jù)拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于中檔題.8、A【解析】
根據(jù)奇偶性定義和性質(zhì)可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結(jié)果.【詳解】為定義在上的偶函數(shù),圖象關(guān)于軸對稱又在上是增函數(shù)在上是減函數(shù),即對于恒成立在上恒成立,即的取值范圍為:本題正確選項:【點睛】本題考查利用函數(shù)的奇偶性和單調(diào)性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關(guān)鍵是能夠利用函數(shù)單調(diào)性將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,從而利用分離變量法來處理恒成立問題.9、C【解析】
利用誘導公式以及二倍角公式,將化簡為關(guān)于的形式,結(jié)合終邊所在的直線可知的值,從而可求的值.【詳解】因為,且,所以.故選:C.【點睛】本題考查三角函數(shù)中的誘導公式以及三角恒等變換中的二倍角公式,屬于給角求值類型的問題,難度一般.求解值的兩種方法:(1)分別求解出的值,再求出結(jié)果;(2)將變形為,利用的值求出結(jié)果.10、D【解析】
計算兩班的平均值,中位數(shù),方差得到正確,兩班人數(shù)不知道,所以兩班的總平均分無法計算,錯誤,得到答案.【詳解】由題意可得甲班的平均分是104,中位數(shù)是103,方差是26.4;乙班的平均分是102,中位數(shù)是101,方差是37.6,則A,B,C正確.因為甲、乙兩班的人數(shù)不知道,所以兩班的總平均分無法計算,故D錯誤.故選:.【點睛】本題考查了莖葉圖,平均值,中位數(shù),方差,意在考查學生的計算能力和應用能力.11、A【解析】
根據(jù)幾何體分析正視圖和側(cè)視圖的形狀,結(jié)合題干中的數(shù)據(jù)可計算出結(jié)果.【詳解】由三視圖的性質(zhì)和定義知,三棱錐的正視圖與側(cè)視圖都是底邊長為高為的三角形,其面積都是,正視圖與側(cè)視圖的面積之和為,故選:A.【點睛】本題考查幾何體正視圖和側(cè)視圖的面積和,解答的關(guān)鍵就是分析出正視圖和側(cè)視圖的形狀,考查空間想象能力與計算能力,屬于基礎(chǔ)題.12、D【解析】
根據(jù),得到,即,由等比數(shù)列的定義知數(shù)列是等比數(shù)列,然后再利用前n項和公式求.【詳解】因為,所以,所以,所以數(shù)列是等比數(shù)列,又因為,所以,.故選:D【點睛】本題主要考查等比數(shù)列的定義及等比數(shù)列的前n項和公式,還考查了運算求解的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)三角形三邊關(guān)系可知對任意的恒成立,將的解析式用分離常數(shù)法變形,由均值不等式可得分母的取值范圍,則整個式子的取值范圍由的符號決定,故分為三類討論,根據(jù)函數(shù)的單調(diào)性求出函數(shù)值域,再討論,轉(zhuǎn)化為的最小值與的最大值的不等式,進而求出的取值范圍.【詳解】因為對任意正實數(shù),都存在以為三邊長的三角形,故對任意的恒成立,,令,則,當,即時,該函數(shù)在上單調(diào)遞減,則;當,即時,,當,即時,該函數(shù)在上單調(diào)遞增,則,所以,當時,因為,,所以,解得;當時,,滿足條件;當時,,且,所以,解得,綜上,,故答案為:【點睛】本題考查參數(shù)范圍,考查三角形的構(gòu)成條件,考查利用函數(shù)單調(diào)性求函數(shù)值域,考查分類討論思想與轉(zhuǎn)化思想.14、(-4,2)【解析】試題分析:因為當且僅當時取等號,所以考點:基本不等式求最值15、【解析】
根據(jù),可得,進而,有,而,令,得到,再用導數(shù)法求解,【詳解】因為,所以,所以,所以,所以,令,,所以,當時,,當時,所以當時,取得最大值,又,所以取值范圍是,故答案為:【點睛】本題主要考查基本不等式的應用和導數(shù)法求最值,還考查了運算求解的能力,屬于難題,16、【解析】
由可得集合是奇數(shù)集,由此可以得出結(jié)果.【詳解】解:因為所以集合中的元素為奇數(shù),所以.【點睛】本題考查了集合的交集,解析出集合B中元素的性質(zhì)是本題解題的關(guān)鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或;(2).【解析】
(1)時,分類討論,去掉絕對值,分類討論解不等式.(2)時,分類討論去絕對值,得到解析式,由函數(shù)的單調(diào)性可得的最小值,通過恒成立問題,得到關(guān)于的不等式,得到的取值范圍.【詳解】(1)因為,所以,所以不等式等價于或或,解得或.所以不等式的解集為或.(2)因為,所以,根據(jù)函數(shù)的單調(diào)性可知函數(shù)的最小值為,因為恒成立,所以,解得.所以實數(shù)的取值范圍是.【點睛】本題考查分類討論去絕對值,分段函數(shù)求最值,不等式恒成立問題,屬于中檔題.18、(Ⅰ)最小值為;(Ⅱ)見解析【解析】
(1)根據(jù)題意構(gòu)造平均值不等式,結(jié)合均值不等式可得結(jié)果;(2)利用分析法證明,結(jié)合常用不等式和均值不等式即可證明.【詳解】(Ⅰ)則當且僅當,即,時,所以的最小值為.(Ⅱ)要證明:,只需證:,即證明:,由,也即證明:.因為,所以當且僅當時,有,即,當時等號成立.所以【點睛】本題考查均值不等式,分析法證明不等式,審清題意,仔細計算,屬中檔題.19、(Ⅰ),.(Ⅱ)見解析【解析】
(1)由,分和兩種情況,即可求得數(shù)列的通項公式;(2)由題,得,利用等比數(shù)列求和公式,即可得到本題答案.【詳解】(Ⅰ)解:由題,得當時,,得;當時,,整理,得.數(shù)列是以1為首項,2為公比的等比數(shù)列,,;(Ⅱ)證明:由(Ⅰ)知,,故.故得證.【點睛】本題主要考查根據(jù)的關(guān)系式求通項公式以及利用等比數(shù)列的前n項和公式求和并證明不等式,考查學生的運算求解能力和推理證明能力.20、(1)(2)【解析】
(1)把f(x)去絕對值寫成分段函數(shù)的形式,分類討論,分別求得解集,綜合可得結(jié)論.(2)把f(x)去絕對值寫成分段函數(shù),畫出f(x)的圖像,找出利用條件求得a的值.【詳解】(1)時,.當時,即為,解得.當時,,解得.當時,,解得.綜上,的解集為.(2).,由的圖象知,,.【點睛】本題主要考查含絕對值不等式的解法及含絕對值的函數(shù)的最值問題,體現(xiàn)了分類討論的數(shù)學思想,屬于中檔題21、(1)見解析;(II).【解析】
試題分析:(1)取中點,連結(jié),以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能證明為直角三角形;(2)設(shè),由,得,求出平面的法向量和平面的法向量,,根據(jù)空間向量夾角余弦公式能求出結(jié)果.試題解析:(I)取中點,連結(jié),依題意可知均為正三角形,所以,又平面平面,所以平面,又平面,所以,因為,所以,即,從而為直角三角形.(II)法一:由(I)可知,又平面平面,平面平面,平面,所以平面.以為原點,建立空間直角坐標系如圖所示,則,由可得點的坐標所以,設(shè)平面的法向量為,則,即解得,令,得,顯然平面的一個法向量為,依題意,解得或(舍
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國石材工程裝飾品行業(yè)發(fā)展分析及投資風險預測研究報告
- 2025-2030中國真皮款鞋行業(yè)市場深度調(diào)研及發(fā)展趨勢與投資價值評估研究報告
- 航空公司財務人員廉潔自律心得體會
- 2025-2030中國電咖啡壺行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025-2030中國電動打釘機行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 科研機構(gòu)實驗室裝修質(zhì)量保障措施
- 2025年度家庭教育指導計劃
- 在線教育平臺投資協(xié)議
- 2025年小學語文教師語言藝術(shù)培訓計劃
- 建筑設(shè)計保密協(xié)議及免責聲明
- 枸櫞酸氯米芬促排卵療效的預測指標
- JBT 14588-2023 激光加工鏡頭 (正式版)
- DL-T5001-2014火力發(fā)電廠工程測量技術(shù)規(guī)程
- 2024-2034年年版礦泉水項目融資商業(yè)計劃書
- 花卉市場攤位租賃合同
- 2024-2030年中國順式1,4-丁烯二醇行業(yè)市場競爭態(tài)勢及未來趨勢研判報告
- 供應商現(xiàn)場考察表
- 2020年度臨床護理技術(shù)操作規(guī)程及質(zhì)量標準
- (正式版)QBT 5985-2024 綠色設(shè)計產(chǎn)品評價技術(shù)規(guī)范 工業(yè)衡器
- 事業(yè)單位工作人員調(diào)動申報表
- 2023年壓瘡相關(guān)知識考核試題及答案
評論
0/150
提交評論