版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省吉安市四校2024屆高考數(shù)學(xué)倒計(jì)時(shí)模擬卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的圖象大致為()A. B.C. D.2.地球上的風(fēng)能取之不盡,用之不竭.風(fēng)能是淸潔能源,也是可再生能源.世界各國(guó)致力于發(fā)展風(fēng)力發(fā)電,近10年來,全球風(fēng)力發(fā)電累計(jì)裝機(jī)容量連年攀升,中國(guó)更是發(fā)展迅猛,2014年累計(jì)裝機(jī)容量就突破了,達(dá)到,中國(guó)的風(fēng)力發(fā)電技術(shù)也日臻成熟,在全球范圍的能源升級(jí)換代行動(dòng)中體現(xiàn)出大國(guó)的擔(dān)當(dāng)與決心.以下是近10年全球風(fēng)力發(fā)電累計(jì)裝機(jī)容量與中國(guó)新增裝機(jī)容量圖.根據(jù)所給信息,正確的統(tǒng)計(jì)結(jié)論是()A.截止到2015年中國(guó)累計(jì)裝機(jī)容量達(dá)到峰值B.10年來全球新增裝機(jī)容量連年攀升C.10年來中國(guó)新增裝機(jī)容量平均超過D.截止到2015年中國(guó)累計(jì)裝機(jī)容量在全球累計(jì)裝機(jī)容量中占比超過3.在天文學(xué)中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽(yáng)的星等是–26.7,天狼星的星等是–1.45,則太陽(yáng)與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.10–10.14.已知實(shí)數(shù),則的大小關(guān)系是()A. B. C. D.5.已知函數(shù)(),若函數(shù)在上有唯一零點(diǎn),則的值為()A.1 B.或0 C.1或0 D.2或06.已知數(shù)列an滿足:an=2,n≤5a1A.16 B.17 C.18 D.197.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.48.已知復(fù)數(shù)z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限9.若函數(shù)在時(shí)取得極值,則()A. B. C. D.10.已知復(fù)數(shù),,則()A. B. C. D.11.設(shè)復(fù)數(shù),則=()A.1 B. C. D.12.已知直線:與橢圓交于、兩點(diǎn),與圓:交于、兩點(diǎn).若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正方體中,是棱的中點(diǎn),是側(cè)面上的動(dòng)點(diǎn),且平面,記與的軌跡構(gòu)成的平面為.①,使得;②直線與直線所成角的正切值的取值范圍是;③與平面所成銳二面角的正切值為;④正方體的各個(gè)側(cè)面中,與所成的銳二面角相等的側(cè)面共四個(gè).其中正確命題的序號(hào)是________.(寫出所有正確命題的序號(hào))14.(5分)如圖是一個(gè)算法的流程圖,若輸出的值是,則輸入的值為____________.15.已知實(shí)數(shù),且由的最大值是_________16.(5分)已知為實(shí)數(shù),向量,,且,則____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某公園準(zhǔn)備在一圓形水池里設(shè)置兩個(gè)觀景噴泉,觀景噴泉的示意圖如圖所示,兩點(diǎn)為噴泉,圓心為的中點(diǎn),其中米,半徑米,市民可位于水池邊緣任意一點(diǎn)處觀賞.(1)若當(dāng)時(shí),,求此時(shí)的值;(2)設(shè),且.(i)試將表示為的函數(shù),并求出的取值范圍;(ii)若同時(shí)要求市民在水池邊緣任意一點(diǎn)處觀賞噴泉時(shí),觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.18.(12分)如圖,在斜三棱柱中,已知為正三角形,D,E分別是,的中點(diǎn),平面平面,.(1)求證:平面;(2)求證:平面.19.(12分)已知函數(shù).(1)求函數(shù)的零點(diǎn);(2)設(shè)函數(shù)的圖象與函數(shù)的圖象交于,兩點(diǎn),求證:;(3)若,且不等式對(duì)一切正實(shí)數(shù)x恒成立,求k的取值范圍.20.(12分)如圖為某大江的一段支流,岸線與近似滿足∥,寬度為.圓為江中的一個(gè)半徑為的小島,小鎮(zhèn)位于岸線上,且滿足岸線,.現(xiàn)計(jì)劃建造一條自小鎮(zhèn)經(jīng)小島至對(duì)岸的水上通道(圖中粗線部分折線段,在右側(cè)),為保護(hù)小島,段設(shè)計(jì)成與圓相切.設(shè).(1)試將通道的長(zhǎng)表示成的函數(shù),并指出定義域;(2)若建造通道的費(fèi)用是每公里100萬元,則建造此通道最少需要多少萬元?21.(12分)在極坐標(biāo)系中,已知曲線,.(1)求曲線、的直角坐標(biāo)方程,并判斷兩曲線的形狀;(2)若曲線、交于、兩點(diǎn),求兩交點(diǎn)間的距離.22.(10分)有最大值,且最大值大于.(1)求的取值范圍;(2)當(dāng)時(shí),有兩個(gè)零點(diǎn),證明:.(參考數(shù)據(jù):)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)函數(shù)的奇偶性和單調(diào)性,排除錯(cuò)誤選項(xiàng),從而得出正確選項(xiàng).【詳解】因?yàn)?,所以是偶函?shù),排除C和D.當(dāng)時(shí),,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A【點(diǎn)睛】本小題主要考查函數(shù)圖像的識(shí)別,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值,屬于中檔題.2、D【解析】
先列表分析近10年全球風(fēng)力發(fā)電新增裝機(jī)容量,再結(jié)合數(shù)據(jù)研究單調(diào)性、平均值以及占比,即可作出選擇.【詳解】年份2009201020112012201320142015201620172018累計(jì)裝機(jī)容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增裝機(jī)容量39.140.645.135.851.863.854.953.551.4中國(guó)累計(jì)裝機(jī)裝機(jī)容量逐年遞增,A錯(cuò)誤;全球新增裝機(jī)容量在2015年之后呈現(xiàn)下降趨勢(shì),B錯(cuò)誤;經(jīng)計(jì)算,10年來中國(guó)新增裝機(jī)容量平均每年為,選項(xiàng)C錯(cuò)誤;截止到2015年中國(guó)累計(jì)裝機(jī)容量,全球累計(jì)裝機(jī)容量,占比為,選項(xiàng)D正確.故選:D【點(diǎn)睛】本題考查條形圖,考查基本分析求解能力,屬基礎(chǔ)題.3、A【解析】
由題意得到關(guān)于的等式,結(jié)合對(duì)數(shù)的運(yùn)算法則可得亮度的比值.【詳解】?jī)深w星的星等與亮度滿足,令,.故選A.【點(diǎn)睛】本題以天文學(xué)問題為背景,考查考生的數(shù)學(xué)應(yīng)用意識(shí)?信息處理能力?閱讀理解能力以及指數(shù)對(duì)數(shù)運(yùn)算.4、B【解析】
根據(jù),利用指數(shù)函數(shù)對(duì)數(shù)函數(shù)的單調(diào)性即可得出.【詳解】解:∵,∴,,.∴.故選:B.【點(diǎn)睛】本題考查了指數(shù)函數(shù)對(duì)數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.5、C【解析】
求出函數(shù)的導(dǎo)函數(shù),當(dāng)時(shí),只需,即,令,利用導(dǎo)數(shù)求其單調(diào)區(qū)間,即可求出參數(shù)的值,當(dāng)時(shí),根據(jù)函數(shù)的單調(diào)性及零點(diǎn)存在性定理可判斷;【詳解】解:∵(),∴,∴當(dāng)時(shí),由得,則在上單調(diào)遞減,在上單調(diào)遞增,所以是極小值,∴只需,即.令,則,∴函數(shù)在上單調(diào)遞增.∵,∴;當(dāng)時(shí),,函數(shù)在上單調(diào)遞減,∵,,函數(shù)在上有且只有一個(gè)零點(diǎn),∴的值是1或0.故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)問題,零點(diǎn)存在性定理的應(yīng)用,屬于中檔題.6、B【解析】
由題意可得a1=a2=a3=a4=a5=2,累加法求得a62+【詳解】解:an即a1=an?6時(shí),a1a1兩式相除可得1+a則an2=由a6a7…,ak2=可得aa1且a1正整數(shù)k(k?5)時(shí),要使得a1則ak+1則k=17,故選:B.【點(diǎn)睛】本題考查與遞推數(shù)列相關(guān)的方程的整數(shù)解的求法,注意將題設(shè)中的遞推關(guān)系變形得到新的遞推關(guān)系,從而可簡(jiǎn)化與數(shù)列相關(guān)的方程,本題屬于難題.7、A【解析】
由傾斜角的余弦值,求出正切值,即的關(guān)系,求出雙曲線的離心率.【詳解】解:設(shè)雙曲線的半個(gè)焦距為,由題意又,則,,,所以離心率,故選:A.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),屬于基礎(chǔ)題8、C【解析】分析:根據(jù)復(fù)數(shù)的運(yùn)算,求得復(fù)數(shù)z,再利用復(fù)數(shù)的表示,即可得到復(fù)數(shù)對(duì)應(yīng)的點(diǎn),得到答案.詳解:由題意,復(fù)數(shù)z=2i1-i所以復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(-1,-1),位于復(fù)平面內(nèi)的第三象限,故選C.點(diǎn)睛:本題主要考查了復(fù)數(shù)的四則運(yùn)算及復(fù)數(shù)的表示,其中根據(jù)復(fù)數(shù)的四則運(yùn)算求解復(fù)數(shù)z是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.9、D【解析】
對(duì)函數(shù)求導(dǎo),根據(jù)函數(shù)在時(shí)取得極值,得到,即可求出結(jié)果.【詳解】因?yàn)?,所以,又函?shù)在時(shí)取得極值,所以,解得.故選D【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,根據(jù)函數(shù)的極值求參數(shù)的問題,屬于??碱}型.10、B【解析】分析:利用的恒等式,將分子、分母同時(shí)乘以,化簡(jiǎn)整理得詳解:,故選B點(diǎn)睛:復(fù)數(shù)問題是高考數(shù)學(xué)中的常考問題,屬于得分題,主要考查的方面有:復(fù)數(shù)的分類、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模、共軛復(fù)數(shù)以及復(fù)數(shù)的乘除運(yùn)算,在運(yùn)算時(shí)注意符號(hào)的正、負(fù)問題.11、A【解析】
根據(jù)復(fù)數(shù)的除法運(yùn)算,代入化簡(jiǎn)即可求解.【詳解】復(fù)數(shù),則故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的除法運(yùn)算與化簡(jiǎn)求值,屬于基礎(chǔ)題.12、A【解析】
由題意可知直線過定點(diǎn)即為圓心,由此得到坐標(biāo)的關(guān)系,再根據(jù)點(diǎn)差法得到直線的斜率與坐標(biāo)的關(guān)系,由此化簡(jiǎn)并求解出離心率的取值范圍.【詳解】設(shè),且線過定點(diǎn)即為的圓心,因?yàn)?,所以,又因?yàn)椋?,所以,所以,所以,所以,所以,所?故選:A.【點(diǎn)睛】本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點(diǎn)差法的運(yùn)用,難度一般.通過運(yùn)用點(diǎn)差法達(dá)到“設(shè)而不求”的目的,大大簡(jiǎn)化運(yùn)算.二、填空題:本題共4小題,每小題5分,共20分。13、①②③④【解析】
取中點(diǎn),中點(diǎn),中點(diǎn),先利用中位線的性質(zhì)判斷點(diǎn)的運(yùn)動(dòng)軌跡為線段,平面即為平面,畫出圖形,再依次判斷:①利用等腰三角形的性質(zhì)即可判斷;②直線與直線所成角即為直線與直線所成角,設(shè)正方體的棱長(zhǎng)為2,進(jìn)而求解;③由,取為中點(diǎn),則,則即為與平面所成的銳二面角,進(jìn)而求解;④由平行的性質(zhì)及圖形判斷即可.【詳解】取中點(diǎn),連接,則,所以,所以平面即為平面,取中點(diǎn),中點(diǎn),連接,則易證得,所以平面平面,所以點(diǎn)的運(yùn)動(dòng)軌跡為線段,平面即為平面.①取為中點(diǎn),因?yàn)槭堑妊切?所以,又因?yàn)?所以,故①正確;②直線與直線所成角即為直線與直線所成角,設(shè)正方體的棱長(zhǎng)為2,當(dāng)點(diǎn)為中點(diǎn)時(shí),直線與直線所成角最小,此時(shí),;當(dāng)點(diǎn)與點(diǎn)或點(diǎn)重合時(shí),直線與直線所成角最大,此時(shí),所以直線與直線所成角的正切值的取值范圍是,②正確;③與平面的交線為,且,取為中點(diǎn),則即為與平面所成的銳二面角,,所以③正確;④正方體的各個(gè)側(cè)面中,平面,平面,平面,平面與平面所成的角相等,所以④正確.故答案為:①②③④【點(diǎn)睛】本題考查直線與平面的空間位置關(guān)系,考查異面直線成角,二面角,考查空間想象能力與轉(zhuǎn)化思想.14、或【解析】
依題意,當(dāng)時(shí),由,即,解得;當(dāng)時(shí),由,解得或(舍去).綜上,得或.15、【解析】
將其轉(zhuǎn)化為幾何意義,然后根據(jù)最值的條件求出最大值【詳解】由化簡(jiǎn)得,又實(shí)數(shù),圖形為圓,如圖:,可得,則由幾何意義得,則,為求最大值則當(dāng)過點(diǎn)或點(diǎn)時(shí)取最小值,可得所以的最大值是【點(diǎn)睛】本題考查了二元最值問題,將其轉(zhuǎn)化為幾何意義,得到圓的方程及斜率問題,對(duì)要求的二元二次表達(dá)式進(jìn)行化簡(jiǎn),然后求出最值問題,本題有一定難度。16、5【解析】
由,,且,得,解得,則,則.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)(i),;(ii).【解析】
(1)在中,由正弦定理可得所求;(2)(i)由余弦定理得,兩式相加可得所求解析式.(ii)在中,由余弦定理可得,根據(jù)的最大值不小于可得關(guān)于的不等式,解不等式可得所求.【詳解】(1)在中,由正弦定理得,所以,即.(2)(i)在中,由余弦定理得,在中,由余弦定理得,又所以,即.又,解得,所以所求關(guān)系式為,.(ii)當(dāng)觀賞角度的最大時(shí),取得最小值.在中,由余弦定理可得,因?yàn)榈淖畲笾挡恍∮?,所以,解得,?jīng)驗(yàn)證知,所以.即兩處噴泉間距離的最小值為.【點(diǎn)睛】本題考查解三角形在實(shí)際中的應(yīng)用,解題時(shí)要注意把條件轉(zhuǎn)化為三角形的邊或角,然后借助正余弦定理進(jìn)行求解.解題時(shí)要注意三角形邊角關(guān)系的運(yùn)用,同時(shí)還要注意所得結(jié)果要符合實(shí)際意義.18、(1)見解析;(2)見解析【解析】
(1)根據(jù),分別是,的中點(diǎn),即可證明,從而可證平面;(2)先根據(jù)為正三角形,且D是的中點(diǎn),證出,再根據(jù)平面平面,得到平面,從而得到,結(jié)合,即可得證.【詳解】(1)∵,分別是,的中點(diǎn)∴∵平面,平面∴平面.(2)∵為正三角形,且D是的中點(diǎn)∴∵平面平面,且平面平面,平面∴平面∵平面∴∵且∴∵,平面,且∴平面.【點(diǎn)睛】本題考查直線與平面平行的判定,面面垂直的性質(zhì)等,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng),中檔題.19、(1)x=1(2)證明見解析(3)【解析】
(1)令,根據(jù)導(dǎo)函數(shù)確定函數(shù)的單調(diào)區(qū)間,求出極小值,進(jìn)而求解;(2)轉(zhuǎn)化思想,要證,即證,即證,構(gòu)造函數(shù)進(jìn)而求證;(3)不等式對(duì)一切正實(shí)數(shù)恒成立,,設(shè),分類討論進(jìn)而求解.【詳解】解:(1)令,所以,當(dāng)時(shí),,在上單調(diào)遞增;當(dāng)時(shí),,在單調(diào)遞減;所以,所以的零點(diǎn)為.(2)由題意,,要證,即證,即證,令,則,由(1)知,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,即,所以原不等式成立.(3)不等式對(duì)一切正實(shí)數(shù)恒成立,,設(shè),,記,△,①當(dāng)△時(shí),即時(shí),恒成立,故單調(diào)遞增.于是當(dāng)時(shí),,又,故,當(dāng)時(shí),,又,故,又當(dāng)時(shí),,因此,當(dāng)時(shí),,②當(dāng)△,即時(shí),設(shè)的兩個(gè)不等實(shí)根分別為,,又,于是,故當(dāng)時(shí),,從而在單調(diào)遞減;當(dāng)時(shí),,此時(shí),于是,即舍去,綜上,的取值范圍是.【點(diǎn)睛】(1)考查函數(shù)求導(dǎo),根據(jù)導(dǎo)函數(shù)確定函數(shù)的單調(diào)性,零點(diǎn);(2)考查轉(zhuǎn)化思想,構(gòu)造函數(shù)求極值;(3)考查分類討論思想,函數(shù)的單調(diào)性,函數(shù)的求導(dǎo);屬于難題.20、(1),定義域是.(2)百萬【解析】
(1)以為原點(diǎn),直線為軸建立如圖所示的直角坐標(biāo)系,設(shè),利用直線與圓相切得到,再代入這一關(guān)系中,即可得答案;(2)利用導(dǎo)數(shù)求函數(shù)的最小值,即可得答案;【詳解】以為原點(diǎn),直線為軸建立如圖所示的直角坐標(biāo)系.設(shè),則,,.因?yàn)?,所以直線的方程為,即,因?yàn)閳A與相切,所以,即,從而得,在直線的方程中,令,得,所以,所以當(dāng)時(shí),,設(shè)銳角滿足,則,所以關(guān)于的函數(shù)是,定義域是.(2)要使建造此通道費(fèi)用最少,只要通道的長(zhǎng)度即最小.令,得,設(shè)銳角,滿足,得.列表:0減極小值增所以時(shí),,所以建造此通道的最少費(fèi)用至少為百萬元.【點(diǎn)睛】本題考查三角函數(shù)模型的實(shí)際應(yīng)用、利用導(dǎo)數(shù)求函數(shù)的最小值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力.21、(1)表示一條直線,是圓心為,半徑為的圓;(2).【解析】
(1)直接利用極坐標(biāo)方程與直角坐標(biāo)方程之間的轉(zhuǎn)換關(guān)系可將曲線的方程化為直角坐標(biāo)方程,進(jìn)而可判斷出曲線的形狀,在曲線的方程兩邊同時(shí)乘以得,由可將曲線的方程化為直角坐標(biāo)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年教科新版九年級(jí)地理上冊(cè)月考試卷
- 2025年粵教版九年級(jí)地理上冊(cè)月考試卷含答案
- 機(jī)場(chǎng)工程監(jiān)理合同(2篇)
- 2025年新科版選修3物理上冊(cè)月考試卷含答案
- 2025年粵人版高一地理下冊(cè)階段測(cè)試試卷含答案
- 2025年安徽衛(wèi)生健康職業(yè)學(xué)院高職單招語(yǔ)文2018-2024歷年參考題庫(kù)頻考點(diǎn)含答案解析
- 初級(jí)經(jīng)濟(jì)師基礎(chǔ)知識(shí)-初級(jí)經(jīng)濟(jì)師考試《基礎(chǔ)知識(shí)》模擬試卷2
- 2025年南京鐵道職業(yè)技術(shù)學(xué)院高職單招語(yǔ)文2018-2024歷年參考題庫(kù)頻考點(diǎn)含答案解析
- 2025至2031年中國(guó)超加硬全效發(fā)水膜鏡片行業(yè)投資前景及策略咨詢研究報(bào)告
- 二零二五年度2025年度門面房屋租賃押金退還及租賃期滿合同
- 中央2025年公安部部分直屬事業(yè)單位招聘84人筆試歷年參考題庫(kù)附帶答案詳解
- 三年級(jí)數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)附答案
- 中醫(yī)診療方案腎病科
- 2025年安慶港華燃?xì)庀薰菊衅腹ぷ魅藛T14人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 人教版(2025新版)七年級(jí)下冊(cè)數(shù)學(xué)第七章 相交線與平行線 單元測(cè)試卷(含答案)
- 玩具有害物質(zhì)風(fēng)險(xiǎn)評(píng)估-洞察分析
- 2024年河南省公務(wù)員錄用考試《行測(cè)》真題及答案解析
- 2023年上海鐵路局集團(tuán)有限公司招聘筆試真題
- 信永中和在線測(cè)評(píng)85題
- 《軟件培訓(xùn)講義》課件
評(píng)論
0/150
提交評(píng)論