2024屆黑龍江哈爾濱市省實驗中學(xué)數(shù)學(xué)高二年級上冊期末經(jīng)典試題含解析_第1頁
2024屆黑龍江哈爾濱市省實驗中學(xué)數(shù)學(xué)高二年級上冊期末經(jīng)典試題含解析_第2頁
2024屆黑龍江哈爾濱市省實驗中學(xué)數(shù)學(xué)高二年級上冊期末經(jīng)典試題含解析_第3頁
2024屆黑龍江哈爾濱市省實驗中學(xué)數(shù)學(xué)高二年級上冊期末經(jīng)典試題含解析_第4頁
2024屆黑龍江哈爾濱市省實驗中學(xué)數(shù)學(xué)高二年級上冊期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆黑龍江哈爾濱市省實驗中學(xué)數(shù)學(xué)高二上期末經(jīng)典試題

考生請注意:

1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。

2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的

位置上。

3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。

一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。

已知點是雙曲線二-

1.F=1的左焦點,點E是該雙曲線的右頂點,過歹作垂直于x軸的直線與雙曲線交于G、

a"

"兩點,若△GHE是銳角三角形,則該雙曲線的離心率e的取值范圍是()

A.(l,+oo)B.(l,2)

C.(2,l+V2)D.(l,l+V2)

2.《張邱建算經(jīng)》記載:今有女子不善織布,逐日織布同數(shù)遞減,初日織五尺,末一日織一尺,計織三十日,問第11

日到第20日這10日共織布()

A.30尺B.40尺

C.6尺D.60尺

Y2

3.直線x-y+l=0被橢圓3十產(chǎn)=1所截得的弦長1A為等于()

A.竽B.&

C.272D.3亞

4.我們知道:用平行于圓錐母線的平面(不過頂點)截圓錐,則平面與圓錐側(cè)面的交線是拋物線一部分,如圖,在底

面半徑和高均為2的圓錐中,AB.CD是底面圓。的兩條互相垂直的直徑,E是母線的中點,已知過CZ>與E的

平面與圓錐側(cè)面的交線是以E為頂點的圓錐曲線的一部分,則該圓錐曲線的焦點到其準線的距離等于()

C.-^2D.1

22

5.雙曲線言―言=1的兩個焦點為片,F(xiàn)2,雙曲線上一點P到月的距離為8,則點P到%的距離為()

A.2或12B.2或18

C.18D.2

6.在數(shù)列{%}中,q=_;a=i一一二則。2020的值為()

a

4n-l

「4

A.5B.一

5

C.--D.以上都不對

4

7.如圖,面積為S的正方形ABC。中有一個不規(guī)則的圖形可按下面方法估計M的面積:在正方形ABC。中隨

機投擲“個點,若”個點中有m個點落入M中,則M的面積的估計值為一S,假設(shè)正方形ABC。的邊長為2,〃的

n

面積為1,并向正方形ABC。中隨機投擲10000個點,用以上方法估計〃的面積時,〃的面積的估計值與實際值之

差在區(qū)間(-0.03,0.03)內(nèi)的概率為

k

附表:P(k)=ECooooX0.25,X0.75必眸‘

r=0

k2424242525742575

pg0.04030.04230.95700.9590

A.0.9287B.0.9187

C.0.9167D.0.9147

8.4位同學(xué)報名參加四個課外活動小組,每位同學(xué)限報其中的一個小組,則不同的報名方法共有()

A.24種B.81種

C.64種D.256種

?v224

9.已知雙曲線C:=-3=1(4>0,6>0)的左、右焦點分別為《,工,過點耳且斜率為-一的直線與雙曲線在第

ab7

二象限的交點為A,若(耳耳+耳A)?&A=0,則雙曲線。的離心率是()

45

A.-B.-

33

3

C.一D.2

2

10.已知隨機變量JN(3,〃),p(^<4)=0.76,則P(J<2)的值為()

A.0.24B.0.26

C.0.68D.0.76

11.命題P:任意圓的內(nèi)接四邊形是矩形,則M為()

A.每一個圓的內(nèi)接四邊形是矩形

B.有的圓的內(nèi)接四邊形不是矩形

C.所有圓的內(nèi)接四邊形不是矩形

D.存在一個圓的內(nèi)接四邊形是矩形

3a

12.在ABC中,角A,B,C所對的邊分別為a,b,c,若COS3=M,a=5,一ABC的面積為10,則的值

sinA

為()

5有

A.在B.

22

「5A/23亞

u.------D.

22

二、填空題:本題共4小題,每小題5分,共20分。

13.如圖,在棱長為2的正方體ABCD-A4GA中,E為的中點,點尸在線段上,分別記四棱錐P-ABCD,

尸-M2。的體積為匕匕,則彳+V的最小值為

14.正四棱錐P-ABCD底面邊長和高均為2,瓦凡G,"分別是其所在棱的中點,則棱臺£FG//-A3CD的體積為

D

B

15.已知拋物線C:V=2py(p〉0)的焦點歹到準線的距離為4,過點尸和R>,0)的直線/與拋物線C交于P,Q

兩點.若RP=PF,則I尸。1=1

16.過拋物線C:無2=8y的準線上任意一點p做拋物線的切線Q4P3,切點分別為A6,則A點到準線的距離與3

點到準線的距離之和的最小值為

三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。

17.(12分)已知兩個定點4(0,4),6(0,1),動點p滿足|/訓(xùn)=21PBi,設(shè)動點p的軌跡為曲線E,直線/:y=區(qū)―4

(1)求曲線E的軌跡方程;

(2)若/與曲線上交于不同的C、D兩點,且NCO£>=120°(。為坐標原點),求直線/的斜率;

18.(12分)已知{4}是等差數(shù)列,{2}是各項都為正數(shù)的等比數(shù)列,4=優(yōu)=1,再從①為+%=10;②4%=4;

③這三個條件中選擇,兩個作為已知.

(1)求數(shù)列{4}的通項公式;

(2)求數(shù)列{2}的前”項和.

19.(12分)已知數(shù)列{4}的前〃項和為S“,q=2,且S〃M=2S“+2.

(1)求數(shù)列{%,}的通項公式;

1111c

⑵在區(qū),與4+i之間插入“個數(shù),使這〃+2個數(shù)組成一個公差為4的等差數(shù)列,求證:y+—+y+---+—<3

口2口3口,

20.(12分)已知塞函數(shù)1)2——+2在@+8)上單調(diào)遞減,函數(shù)g(x)=土三的定義域為集合A

4+x

(1)求加的值;

(2)當(dāng)xe伏』次>0時,/(%)的值域為集合B,若%e8是xeA成立的充分不必要條件,求實數(shù)左的取值范圍

21.(12分)如圖,在四棱錐A—BCDE中,四邊形BCDE為平行四邊形,且BC=2,ZCBE=45°,三角形ABE

為等腰直角三角形,且AB=2,ZBAE=90°.

(1)若點。為棱BE的中點,證明:平面ACD,平面AOC;

(2)若平面ABE,平面3CDE,點口為棱BC的中點,求直線■與平面ADE所成角的正弦值.

22.(10分)已知命題p:實數(shù)x滿足。⑷+(a—2)2—2W0;命題°:實數(shù)x滿足/—3x+2<0.若p是g的必

要條件,求實數(shù)。的取值范圍

參考答案

一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。

1、B

【解題分析】根據(jù)△GHE是等腰三角形且為銳角三角形,得到|G司<|跖|,即忙<a+c,解得離心率范圍.

a

2272((r2、

【題目詳解】F(-C,O),當(dāng)x=-c時,=y=±±,不妨取G-C—,H-C,一一,

aba<a)\a)

△GH石是等腰三角形且為銳角三角形,則NGE尸<;,BP|GF|<|EF|,

—<a+c,即c2V2a2+ac,^2—2<0>解得—1<ev2,故lve<2.

a

故選:B.

2、A

【解題分析】由題意可知,每日的織布數(shù)構(gòu)成等差數(shù)列,由等差數(shù)列的求和公式得解.

【題目詳解】由題女子織布數(shù)成等差數(shù)列,設(shè)第〃日織布為有囚=5,生0=1,所以

41+%2++〃20+%0)=5(%+〃30)=30,

故選:A.

3、A

【解題分析】聯(lián)立方程組,求出交點坐標,利用兩點間的距離公式求距離.

x-J+1=O,,------------

由丁,得交點為(0J),則以為=/(3)2+(1+工)23A/2

【題目詳解】=

—+y-=1,22V22

L3,

故選:A.

4、C

【解題分析】由圓錐的底面半徑和高及E的位置可得0后=0,建立適當(dāng)?shù)钠矫嬷苯亲鴺讼?,可得C的坐標,設(shè)拋

物線的方程,將C的坐標代入求出拋物線的方程,進而可得焦點到其準線的距離

【題目詳解】

設(shè)A3,的交點為。,連接P。,由題意可得產(chǎn)。,面A3,所以由題意O8=OP=OC=2,因為E是母線

尸3的中點,所以=由題意建立適當(dāng)?shù)淖鴺讼?,?P為y軸以O(shè)E為x軸,E為坐標原點,如圖所示:

可得:C(-A/2,2),

設(shè)拋物線的方程為產(chǎn)=機X,將C點坐標代入可得4=-"n,所以加=-2形,,所以拋物線的方程為:y2=-2y/2x,

所以焦點坐標為(-9⑼,準線方程為人與

所以焦點到其準線的距離為J5

故選:c

y

5、c

【解題分析】利用雙曲線的定義求|尸閭.

【題目詳解】解:由雙曲線定義可知:||「耳|一8|=2。=10

解得|P閭=18或—2(舍)???點尸到工的距離為18,

故選:C.

6、C

【解題分析】由數(shù)列的遞推公式可先求數(shù)列的前幾項,從而發(fā)現(xiàn)數(shù)列的周期性的特點,進而可求.

1,1

【題目詳解】解:%=-一,4=1——

4an_x

%=1=一:=%

。34

??.數(shù)列{4}是以3為周期的數(shù)列

一〃2020—a\~~~

故選:C

【題目點撥】本題主要考查了利用數(shù)列的遞推公式求解數(shù)列的項,解題的關(guān)鍵是由遞推關(guān)系發(fā)現(xiàn)數(shù)列的周期性的特點,

屬于基礎(chǔ)題.

7、D

【解題分析】每個點落入M中的概率為工,設(shè)落入M中的點的數(shù)目為X,題意所求概率為

4

y2574

10000

P(-0.03<-------x4-l<0.03)=P(2425<X<2575)=fC;oooox0.25'xO.VS-'=0.9570-0.0423=0,9147

10000Z=2426

故選D

8、D

【解題分析】利用分步乘法計數(shù)原理進行計算.

【題目詳解】每位同學(xué)均有四種選擇,故不同的報名方法有44=256種.

故選:D

9、B

【解題分析】根據(jù)(耳耳+耳A)?&A=0得到三角形A4耳為等腰三角形,然后結(jié)合雙曲線的定義得到|明設(shè)

0a+c4

NAF】F,=e,進而作得出sin?=J」=—,由此求出結(jié)果

22c5

【題目詳解】因為(月及+與4)?瓦X=o,

所以(耳心+耳4).(呼4_£8):耳/—耳工2=0,即降=麗

所以|伍|=閨閭=2c,

由雙曲線的定義,^l\AF2\=2a+2c,

設(shè)/4耳鳥=,,則tan8=_a,易得出”―乙也2一尸小。=),

7252V25

如圖,作耳"為垂足,

f)+c+c

則sinZ=4三,所以竺£=4?,即c上=5士,即雙曲線。的離心率為51.

22c2c5a33

故選:B

10、A

【解題分析】根據(jù)給定條件利用正態(tài)分布的對稱性計算作答.

【題目詳解】因隨機變自N(3,"),P《<4)=0.76,有P(f<4)=P(”4)=0.76,由正態(tài)分布的對稱性得:

W2)=P(空4)=1-P信<4)=1-0.76=0.24,

所以P(J<2)的值為0.24.

故選:A

11、B

【解題分析】全稱命題的否定特稱命題,任意改為存在,把結(jié)論否定.

【題目詳解】全稱量詞命題的否定是特稱命題,需要將全稱量詞換為存在量詞,答案A,C不符合題意,同時對結(jié)論

進行否定,所以9:有的圓的內(nèi)接四邊形不是矩形,

故選:B.

12、A

4L

【解題分析】由同角公式求出sin3=g,根據(jù)三角形面積公式求出c=5,根據(jù)余弦定理求出匕=2遙,根據(jù)正弦定

理求出

sinA

34

【題目詳解】因為3£(0,〃),COS5=M,所以sinB=1,

14

因為〃=5,一ABC的面積為10,所以SABC=—x5xcx—=10,故。=5,

25

從而從=〃2+。2_2accosB=20,解得b-245,

由正弦定理得:2—=上叵.

sinAsin52

故選:A.

【題目點撥】本題考查了同角公式,考查了三角形的面積公式,考查了余弦定理,考查了正弦定理,屬于基礎(chǔ)題.

二、填空題:本題共4小題,每小題5分,共20分。

32

13、—

9

【解題分析】設(shè)EP=2E。,用參數(shù)彳表示目標函數(shù),利用均值不等式求最值即可.

【題目詳解】取線段AD中點為F,連接EF、DiF,過P點引?M,。石于M,PN,D1R于N,

則PM,平面ABCD,PN人平面A41no,

44

則K=-PM,V2=qPN,

...匕2+匕2=+PN?),

設(shè)EP=AED、,

^PMAPN1-2

則—~T,......—9

DD11EF1

即PM=24,PN=2(1-X),

.?.片+%2吟印+圖一月猾^+一月吟號,

當(dāng)且僅當(dāng)幾=;時,等號成立,

32

故答案為:—

7

14、-

3

Q1

【解題分析】分別計算/一.。=3,Yp_EFGH=M作差得到答案?

【題目詳解】G,H分別是其所在棱的中點,則正四棱錐尸-EPGH底面邊長和高均為1,

]811

^P-ABCD=-X2X2X2=J,吃-EFGH==§,

7

故VEFGH-ABCD=^P-ABCD~^P-EFGH=§,

..7

故答案為:—.

3

15、9

【解題分析】根據(jù)拋物線C:x2=2py(p>0)的焦點尸到準線的距離為4,求得拋物線方程x2=8y.

再由我尸=尸尸和F(0,2),得到點P的坐標,進而得到直線/的方程,與拋物線方程聯(lián)立求得。的坐標,再由兩點間

距離公式求解.

【題目詳解】由拋物線C必=2py(p〉0)的焦點尸到準線的距離為%

所以P=4,

所以拋物線方程為好=8〉.

因為RP=PF,尸(0,2),

所以點尸的縱坐標為1,

代入拋物線方程,可得點尸的橫坐標為±2也,

不妨設(shè)P(-2A/2,1),則kpF=-2T廠=—,

0-(-2V2)4

故直線,的方程為>=注%+2,

4

將其代入—=8y得/―2缶-16=0.

可得。(40,4),

故|PQ|=^(-272-4A/2)2+(1-4)2=9?

故答案為:9

【題目點撥】本題主要考查拋物線的方程與性質(zhì),還考查了運算求解的能力,屬于中檔題.

16、8

【解題分析】設(shè)&占,(),B?,1),由f=8y可得丁=今,根據(jù)導(dǎo)數(shù)的幾何意義求得兩切線的方程,聯(lián)立求

得P點的坐標,再根到準線的距離轉(zhuǎn)化為到焦點的距離,三點共線時距離最小,進而求出最小值

【題目詳解】解:設(shè)A(玉,三),8仁,今),由-=8y可得y=會,所以y=:,

所以直線24,網(wǎng)的方程分別為:尤-%),言(尤-》

"X2X、CX+X,

y———L(zx-x)x=-

-841w2

即P("三,華),又有「在準線上,所以華=一2,

288

所以再%=-16,

設(shè)直線A5的方程為:y=kx-\-m,

代入拋物線的方程可得:x2-8Ax-8m=0,可得玉%=-8〃?,

所以可得加=2,即直線恒過(0,2)點,即直線恒過焦點(0,2),

2

即直AB的方程為:y^kx+2,代入拋物線的方程:x-Skx-16^0,

2

入1+%2=8左,所以%+%=左(西+%)+4=8%+4,

A點到準線的距離與B點到準線的距離之和=A尸+=%+%+4=8后2+828,

所以當(dāng)左=0時,距離之和最小且為8,這時直線A3平行于X軸

故答案為:8

三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。

17、(1)x2+y2=4;(2)土正

【解題分析】(1)設(shè)點P的坐標為(龍,y),由|上4|=2歸石,結(jié)合兩點間的距離公式,列出式子,可求出軌跡方程;

(2)易知|0C|=|0£)|=2,且NCO£>=120°,可求出0到直線CD的距離,結(jié)合點。(0,0)到直線/的距離為

IT

VF+i可求出直線/的斜率

【題目詳解】(1)設(shè)點P的坐標為(尤,y),

由|R4|=2|P@,可得擊2+(y—盯=2j£+(y—Ip,

整理得Y+/=4,所以所求曲線E的軌跡方程為必+/=4

⑵依題意,且NCOD=120。,

在△OCZ)中,NODC=30°,取CD的中點H,連結(jié)則OHLCD,

所以|。閭=|。刈.sinNQDC=2x;=1,

即點0(0,0)到直線/:而—y—4=0的距離為^^^=1,解得左=±JB,

[k2+1

所以所求直線/斜率為土

【題目點撥】本題考查軌跡方程,考查直線的斜率,考查兩點間的距離公式、點到直線的距離公式的應(yīng)用,考查學(xué)生

的計算求解能力,屬于基礎(chǔ)題.

18、答案見解析

【解題分析】(1)根據(jù)題設(shè)條件可得關(guān)于基本量的方程組,求解后可得{4}的通項公式.

(2)利用公式法可求數(shù)列{2}的前〃項和.

【題目詳解】解:選擇條件①和條件②

(1)設(shè)等差數(shù)列{4}的公差為d,...[6[1'0…m

%+%=2q+4d=10.

解得:=1,d=2.***cin=1+—1)x2=2n—1,neN**

⑵設(shè)等比數(shù)列也}的公比為心q>09

1

“她b?=b用、q=」解得4'q:?.

設(shè)數(shù)列也}的前〃項和為s“,_=2"T」

一1-22

選擇條件①和條件③:

〃二1

(1)設(shè)等差數(shù)列{4}的公差為d,...I'

a2+a4=2%+4d=10.

解得:q=l,d=2.二a”=l+(〃—l)x2=2〃—1.

(2)”=%=9,設(shè)等比數(shù)列出}的公比為4,q>0.

??kz30,解得4=:,4=3.

[b4=b]q=9.3

1(1-3")3"-1.

設(shè)數(shù)列\(zhòng)b\的前n項和為S,,3

一1-36

選擇條件②和條件③:

⑴設(shè)等比數(shù)列也}的公比為q,q>0,

b7=bq=l,11,

.24,?解得4=7,q=2,a5=b4=—x2^=4.

[b2b4=b^q=4.22

3

設(shè)等差數(shù)列{4}的公差為d,???%=%+4〃=4,又%=1,故d="

'7444

(2)設(shè)數(shù)列出}的前〃項和為S“,

由(1)可知c

0=2“T」

"1-22

【題目點撥】方法點睛:等差數(shù)列或等比數(shù)列的處理有兩類基本方法:(1)利用基本量即把數(shù)學(xué)問題轉(zhuǎn)化為關(guān)于基本

量的方程或方程組,再運用基本量解決與數(shù)列相關(guān)的問題;(2)利用數(shù)列的性質(zhì)求解即通過觀察下標的特征和數(shù)列和

式的特征選擇合適的數(shù)列性質(zhì)處理數(shù)學(xué)問題

19、(1)%=2"

(2)證明見解析

S],"=1ZX

【解題分析】(l)根據(jù)。c作差即可得到{4}是以2為首項,2為公比的等比數(shù)列,從而得到數(shù)列

[Sn-Sn_1,n>2

的通項公式;

(2)由(1)可知4=2",。“+1=2向,根據(jù)等差數(shù)列的通項公式得到必=—,即可得到丁=工廠,再令

n+1??2

,1111

4=7+7+7+…+7,利用錯位相減法求出I,,即可得證;

c//]

【小問1詳解】

解:因為q=2,且Sn+i=2Sn+2,當(dāng)〃=1時S2=2Si+2,則。2=4,所以%=2q,當(dāng)2時,Sn=2sM+2,

則S“+「S”=2S,+2—2S,T—2,即4+1=24,所以{為}是以2為首項,2為公比的等比數(shù)列,所以。"=2”;

【小問2詳解】

r\n+lr>nr\n[幾十]

+1

解:由(1)可知4=2",an+1=T,因為a.=&+(〃+2—1)或,所以或=/=1,所以丁=▼

〃+1〃+1an2

令小"+?..+》則北=2x出+3xg]+4義出++(〃+l)x1),所以

I。成呢+叫「,所以

;(=2xgJ+lxg]+lxgj++lxg]—(〃+l)xg[:即

3所以(=3—*<3,即L-+..J<3;

d]d?d〃

22"+1z

20、(1)m=2

(2)—<^<1

3

【解題分析】(1)根據(jù)塞函數(shù)的定義和單調(diào)性求解;

(2)利用根式函數(shù)的定義域和值域求得集合A,B,再由3是A的真子集求解.

【小問1詳解】

解:因為塞函數(shù)/(無)=(〃?—獷無存f+2在(o,+oo)上單調(diào)遞減,

(m-1)2=1

所以

m2-4m+2<0

解得m=2.

【小問2詳解】

由±3之0,得士口40,

4+x4+x

解得-4<xW3,

所以A=(—4,3],

當(dāng)xe伏,1],左>0時/(%)=/的值域為1,

所以5=1,表

因為xeB是xwA成立的充分不必要條件,

所以5是A的真子集,

F-3

0<女<1

解得且〈左<1.

3

21、(1)證明見解析

⑵述

3

【解題分析】(1)先證明AOLBE,COLBE,進而證明龐1平面AOC,即可證明CD,平面AOC,從而證

明平面ACDL平面AOC.

(2)以。點為坐標原點,分別以O(shè)C,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論