湖南省A佳經(jīng)典聯(lián)考試題2024年高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第1頁(yè)
湖南省A佳經(jīng)典聯(lián)考試題2024年高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第2頁(yè)
湖南省A佳經(jīng)典聯(lián)考試題2024年高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第3頁(yè)
湖南省A佳經(jīng)典聯(lián)考試題2024年高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第4頁(yè)
湖南省A佳經(jīng)典聯(lián)考試題2024年高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖南省A佳經(jīng)典聯(lián)考試題2024年高三第二次聯(lián)考數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知f(x),g(x)都是偶函數(shù),且在[0,+∞)上單調(diào)遞增,設(shè)函數(shù)F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)2.設(shè),則A. B. C. D.3.我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有蒲生一日,長(zhǎng)三尺莞生一日,長(zhǎng)一尺蒲生日自半,莞生日自倍.問幾何日而長(zhǎng)倍?”意思是:“今有蒲草第天長(zhǎng)高尺,蕪草第天長(zhǎng)高尺以后,蒲草每天長(zhǎng)高前一天的一半,蕪草每天長(zhǎng)高前一天的倍.問第幾天莞草是蒲草的二倍?”你認(rèn)為莞草是蒲草的二倍長(zhǎng)所需要的天數(shù)是()(結(jié)果采取“只入不舍”的原則取整數(shù),相關(guān)數(shù)據(jù):,)A. B. C. D.4.已知向量,,若,則()A. B. C. D.5.已知曲線,動(dòng)點(diǎn)在直線上,過點(diǎn)作曲線的兩條切線,切點(diǎn)分別為,則直線截圓所得弦長(zhǎng)為()A. B.2 C.4 D.6.已知函數(shù)滿足:當(dāng)時(shí),,且對(duì)任意,都有,則()A.0 B.1 C.-1 D.7.如圖,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E為AD的中點(diǎn),若,則λ+μ的值為()A. B. C. D.8.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)為()A. B.6 C. D.9.函數(shù)的圖象如圖所示,為了得到的圖象,可將的圖象()A.向右平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向左平移個(gè)單位10.下列不等式成立的是()A. B. C. D.11.對(duì)于函數(shù),定義滿足的實(shí)數(shù)為的不動(dòng)點(diǎn),設(shè),其中且,若有且僅有一個(gè)不動(dòng)點(diǎn),則的取值范圍是()A.或 B.C.或 D.12.為得到函數(shù)的圖像,只需將函數(shù)的圖像()A.向右平移個(gè)長(zhǎng)度單位 B.向右平移個(gè)長(zhǎng)度單位C.向左平移個(gè)長(zhǎng)度單位 D.向左平移個(gè)長(zhǎng)度單位二、填空題:本題共4小題,每小題5分,共20分。13.己知雙曲線的左、右焦點(diǎn)分別為,直線是雙曲線過第一、三象限的漸近線,記直線的傾斜角為,直線,,垂足為,若在雙曲線上,則雙曲線的離心率為_______14.設(shè)為橢圓在第一象限上的點(diǎn),則的最小值為________.15.在長(zhǎng)方體中,,則異面直線與所成角的余弦值為()A. B. C. D.16.已知半徑為的圓周上有一定點(diǎn),在圓周上等可能地任意取一點(diǎn)與點(diǎn)連接,則所得弦長(zhǎng)介于與之間的概率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐P—ABCD中,四邊形ABCD為平行四邊形,BD⊥DC,△PCD為正三角形,平面PCD⊥平面ABCD,E為PC的中點(diǎn).(1)證明:AP∥平面EBD;(2)證明:BE⊥PC.18.(12分)已知橢圓,上頂點(diǎn)為,離心率為,直線交軸于點(diǎn),交橢圓于,兩點(diǎn),直線,分別交軸于點(diǎn),.(Ⅰ)求橢圓的方程;(Ⅱ)求證:為定值.19.(12分)如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是線段EF的中點(diǎn).求證:(1)AM∥平面BDE;(2)AM⊥平面BDF.20.(12分)已知函數(shù)(為實(shí)常數(shù)).(1)討論函數(shù)在上的單調(diào)性;(2)若存在,使得成立,求實(shí)數(shù)的取值范圍.21.(12分)如圖,矩形和梯形所在的平面互相垂直,,,.(1)若為的中點(diǎn),求證:平面;(2)若,求四棱錐的體積.22.(10分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)在處的切線方程;(2)若函數(shù)沒有零點(diǎn),求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】試題分析:由題意得,F(xiàn)(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(xiàn)(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點(diǎn):1.函數(shù)的性質(zhì);2.分類討論的數(shù)學(xué)思想.【思路點(diǎn)睛】本題在在解題過程中抓住偶函數(shù)的性質(zhì),避免了由于單調(diào)性不同導(dǎo)致1-a與1+a大小不明確的討論,從而使解題過程得以優(yōu)化,另外,不要忘記定義域,如果要研究奇函數(shù)或者偶函數(shù)的值域、最值、單調(diào)性等問題,通常先在原點(diǎn)一側(cè)的區(qū)間(對(duì)奇(偶)函數(shù)而言)或某一周期內(nèi)(對(duì)周期函數(shù)而言)考慮,然后推廣到整個(gè)定義域上.2、C【解析】分析:利用復(fù)數(shù)的除法運(yùn)算法則:分子、分母同乘以分母的共軛復(fù)數(shù),化簡(jiǎn)復(fù)數(shù),然后求解復(fù)數(shù)的模.詳解:,則,故選c.點(diǎn)睛:復(fù)數(shù)是高考中的必考知識(shí),主要考查復(fù)數(shù)的概念及復(fù)數(shù)的運(yùn)算.要注意對(duì)實(shí)部、虛部的理解,掌握純虛數(shù)、共軛復(fù)數(shù)這些重要概念,復(fù)數(shù)的運(yùn)算主要考查除法運(yùn)算,通過分母實(shí)數(shù)化轉(zhuǎn)化為復(fù)數(shù)的乘法,運(yùn)算時(shí)特別要注意多項(xiàng)式相乘后的化簡(jiǎn),防止簡(jiǎn)單問題出錯(cuò),造成不必要的失分.3、C【解析】

由題意可利用等比數(shù)列的求和公式得莞草與蒲草n天后長(zhǎng)度,進(jìn)而可得:,解出即可得出.【詳解】由題意可得莞草與蒲草第n天的長(zhǎng)度分別為據(jù)題意得:,解得2n=12,∴n21.故選:C.【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.4、A【解析】

利用平面向量平行的坐標(biāo)條件得到參數(shù)x的值.【詳解】由題意得,,,,解得.故選A.【點(diǎn)睛】本題考查向量平行定理,考查向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.5、C【解析】

設(shè),根據(jù)導(dǎo)數(shù)的幾何意義,求出切線斜率,進(jìn)而得到切線方程,將點(diǎn)坐標(biāo)代入切線方程,抽象出直線方程,且過定點(diǎn)為已知圓的圓心,即可求解.【詳解】圓可化為.設(shè),則的斜率分別為,所以的方程為,即,,即,由于都過點(diǎn),所以,即都在直線上,所以直線的方程為,恒過定點(diǎn),即直線過圓心,則直線截圓所得弦長(zhǎng)為4.故選:C.【點(diǎn)睛】本題考查直線與圓位置關(guān)系、直線與拋物線位置關(guān)系,拋物線兩切點(diǎn)所在直線求解是解題的關(guān)鍵,屬于中檔題.6、C【解析】

由題意可知,代入函數(shù)表達(dá)式即可得解.【詳解】由可知函數(shù)是周期為4的函數(shù),.故選:C.【點(diǎn)睛】本題考查了分段函數(shù)和函數(shù)周期的應(yīng)用,屬于基礎(chǔ)題.7、B【解析】

建立平面直角坐標(biāo)系,用坐標(biāo)表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標(biāo)系,則D(0,0).不妨設(shè)AB=1,則CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得則.故選:B【點(diǎn)睛】本題主要考查了由平面向量線性運(yùn)算的結(jié)果求參數(shù),屬于中檔題.8、D【解析】

根據(jù)幾何體的三視圖,該幾何體是由正方體去掉三棱錐得到,根據(jù)正方體和三棱錐的體積公式可求解.【詳解】如圖,該幾何體為正方體去掉三棱錐,所以該幾何體的體積為:,故選:D【點(diǎn)睛】本題主要考查了空間幾何體的三視圖以及體積的求法,考查了空間想象力,屬于中檔題.9、C【解析】

根據(jù)正弦型函數(shù)的圖象得到,結(jié)合圖像變換知識(shí)得到答案.【詳解】由圖象知:,∴.又時(shí)函數(shù)值最大,所以.又,∴,從而,,只需將的圖象向左平移個(gè)單位即可得到的圖象,故選C.【點(diǎn)睛】已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點(diǎn)法”中相對(duì)應(yīng)的特殊點(diǎn)求,一般用最高點(diǎn)或最低點(diǎn)求.10、D【解析】

根據(jù)指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的單調(diào)性和正余弦函數(shù)的圖象可確定各個(gè)選項(xiàng)的正誤.【詳解】對(duì)于,,,錯(cuò)誤;對(duì)于,在上單調(diào)遞減,,錯(cuò)誤;對(duì)于,,,,錯(cuò)誤;對(duì)于,在上單調(diào)遞增,,正確.故選:.【點(diǎn)睛】本題考查根據(jù)初等函數(shù)的單調(diào)性比較大小的問題;關(guān)鍵是熟練掌握正余弦函數(shù)圖象、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和冪函數(shù)的單調(diào)性.11、C【解析】

根據(jù)不動(dòng)點(diǎn)的定義,利用換底公式分離參數(shù)可得;構(gòu)造函數(shù),并討論的單調(diào)性與最值,畫出函數(shù)圖象,即可確定的取值范圍.【詳解】由得,.令,則,令,解得,所以當(dāng)時(shí),,則在內(nèi)單調(diào)遞增;當(dāng)時(shí),,則在內(nèi)單調(diào)遞減;所以在處取得極大值,即最大值為,則的圖象如下圖所示:由有且僅有一個(gè)不動(dòng)點(diǎn),可得得或,解得或.故選:C【點(diǎn)睛】本題考查了函數(shù)新定義的應(yīng)用,由導(dǎo)數(shù)確定函數(shù)的單調(diào)性與最值,分離參數(shù)法與構(gòu)造函數(shù)方法的應(yīng)用,屬于中檔題.12、D【解析】,所以要的函數(shù)的圖象,只需將函數(shù)的圖象向左平移個(gè)長(zhǎng)度單位得到,故選D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由,則,所以點(diǎn),因?yàn)?,可得,點(diǎn)坐標(biāo)化簡(jiǎn)為,代入雙曲線的方程求解.【詳解】設(shè),則,即,解得,則,所以,即,代入雙曲線的方程可得,所以所以解得.故答案為:【點(diǎn)睛】本題主要考查了直線與雙曲線的位置關(guān)系,及三角恒等變換,還考查了運(yùn)算求解的能力和數(shù)形結(jié)合的思想,屬于中檔題.14、【解析】

利用橢圓的參數(shù)方程,將所求代數(shù)式的最值問題轉(zhuǎn)化為求三角函數(shù)最值問題,利用兩角和的正弦公式和三角函數(shù)的性質(zhì),以及求導(dǎo)數(shù)、單調(diào)性和極值,即可得到所求最小值.【詳解】解:設(shè)點(diǎn),,其中,,由,,,可設(shè),導(dǎo)數(shù)為,由,可得,可得或,由,,可得,即,可得,由可得函數(shù)遞減;由,可得函數(shù)遞增,可得時(shí),函數(shù)取得最小值,且為,則的最小值為1.故答案為:1.【點(diǎn)睛】本題考查橢圓參數(shù)方程的應(yīng)用,利用三角函數(shù)的恒等變換和導(dǎo)數(shù)法求函數(shù)最值的方法,考查化簡(jiǎn)變形能力和運(yùn)算能力,屬于難題.15、C【解析】

根據(jù)確定是異面直線與所成的角,利用余弦定理計(jì)算得到答案.【詳解】由題意可得.因?yàn)椋允钱惷嬷本€與所成的角,記為,故.故選:.【點(diǎn)睛】本題考查了異面直線夾角,意在考查學(xué)生的空間想象能力和計(jì)算能力.16、【解析】在圓上其他位置任取一點(diǎn)B,設(shè)圓半徑為R,其中滿足條件AB弦長(zhǎng)介于與之間的弧長(zhǎng)為?2πR,則AB弦的長(zhǎng)度大于等于半徑長(zhǎng)度的概率P==;故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】

(1)連結(jié)AC交BD于點(diǎn)O,連結(jié)OE,利用三角形中位線可得AP∥OE,從而可證AP∥平面EBD;(2)先證明BD⊥平面PCD,再證明PC⊥平面BDE,從而可證BE⊥PC.【詳解】證明:(1)連結(jié)AC交BD于點(diǎn)O,連結(jié)OE因?yàn)樗倪呅蜛BCD為平行四邊形∴O為AC中點(diǎn),又E為PC中點(diǎn),故AP∥OE,又AP平面EBD,OE平面EBD所以AP∥平面EBD

;(2)∵△PCD為正三角形,E為PC中點(diǎn)所以PC⊥DE因?yàn)槠矫鍼CD⊥平面ABCD,平面PCD平面ABCD=CD,又BD平面ABCD,BD⊥CD∴BD⊥平面PCD又PC平面PCD,故PC⊥BD又BDDE=D,BD平面BDE,DE平面BDE故PC⊥平面BDE又BE平面BDE,所以BE⊥PC.【點(diǎn)睛】本題主要考查空間位置關(guān)系的證明,線面平行一般轉(zhuǎn)化為線線平行來證明,直線與直線垂直通常利用線面垂直來進(jìn)行證明,側(cè)重考查邏輯推理的核心素養(yǎng).18、(Ⅰ);(Ⅱ),證明見解析.【解析】

(Ⅰ)根據(jù)題意列出關(guān)于,,的方程組,解出,,的值,即可得到橢圓的方程;(Ⅱ)設(shè)點(diǎn),,點(diǎn),,易求直線的方程為:,令得,,同理可得,所以,聯(lián)立直線與橢圓方程,利用韋達(dá)定理代入上式,化簡(jiǎn)即可得到.【詳解】(Ⅰ)解:由題意可知:,解得,橢圓的方程為:;(Ⅱ)證:設(shè)點(diǎn),,點(diǎn),,聯(lián)立方程,消去得:,,①,點(diǎn),,,直線的方程為:,令得,,,,同理可得,,,把①式代入上式得:,為定值.【點(diǎn)睛】本題主要考查直線與橢圓的位置關(guān)系、定值問題的求解;關(guān)鍵是能夠通過直線與橢圓聯(lián)立得到韋達(dá)定理的形式,利用韋達(dá)定理化簡(jiǎn)三角形面積得到定值;考查計(jì)算能力與推理能力,屬于中檔題.19、(1)見解析(2)見解析【解析】(1)建立如圖所示的空間直角坐標(biāo)系,設(shè)AC∩BD=N,連結(jié)NE.則N,E(0,0,1),A(,,0),M.∴=,=.∴=且NE與AM不共線.∴NE∥AM.∵NE平面BDE,AM平面BDE,∴AM∥平面BDE.(2)由(1)知=,∵D(,0,0),F(xiàn)(,,1),∴=(0,,1),∴·=0,∴AM⊥DF.同理AM⊥BF.又DF∩BF=F,∴AM⊥平面BDF.20、(1)見解析(2)【解析】

(1)分類討論的值,利用導(dǎo)數(shù)證明單調(diào)性即可;(2)利用導(dǎo)數(shù)分別得出,,時(shí),的最小值,即可得出實(shí)數(shù)的取值范圍.【詳解】(1),.當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞增;當(dāng)即時(shí),時(shí),,在上單調(diào)遞減;時(shí),,在上單調(diào)遞增;當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞減;(2)當(dāng)時(shí),因?yàn)樵谏蠁握{(diào)遞增,所以的最小值為,所以當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增所以的最小值為.因?yàn)?,所以?所以,所以.當(dāng)時(shí),在上單調(diào)遞減所以的最小值為因?yàn)?,所以,所以,綜上,.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)研究函數(shù)的存在性問題,屬于中檔題.21、(1)見解析(2)【解析】

(1)設(shè)EC與DF交于點(diǎn)N,連結(jié)MN,由中位線定理可得MN∥AC,故AC∥平面MDF;(2)取CD中點(diǎn)為G,連結(jié)BG,EG,則可證四邊形ABGD是矩形,由面面垂直的性質(zhì)得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,從而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論