版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題20概率與統(tǒng)計(jì)??夹☆}歸類【目錄】TOC\o"13"\h\z\u 2 3 4 5 11考點(diǎn)一:抽樣方法與隨機(jī)數(shù)表 11考點(diǎn)二:統(tǒng)計(jì)圖表及其數(shù)字特征 12考點(diǎn)三:傳統(tǒng)線性擬合 15考點(diǎn)四:非線性擬合處理 17考點(diǎn)五:傳統(tǒng)獨(dú)立性檢驗(yàn) 18考點(diǎn)六:創(chuàng)新類定義統(tǒng)計(jì) 21考點(diǎn)七:正態(tài)分布 24考點(diǎn)八:超幾何分布與二項(xiàng)分布 25考點(diǎn)九:隨機(jī)變量的分布列、期望、方差 26考點(diǎn)十:古典概型 27考點(diǎn)十一:條件概率與全概率 28考點(diǎn)十二:概統(tǒng)結(jié)合問(wèn)題 30考點(diǎn)十三:傳統(tǒng)規(guī)則的概率問(wèn)題 31考點(diǎn)十四:新賽制概率問(wèn)題 33考點(diǎn)十五:遞推型概率命題 35概率與統(tǒng)計(jì)小題是每年高考必考的內(nèi)容.一是求統(tǒng)計(jì)圖表、方差、平均數(shù);二是求古典概型;三是相互獨(dú)立事件和相互獨(dú)立事件的概率乘法公式.多以選擇、填空題的形式考查,難度容易或中等.考點(diǎn)要求考題統(tǒng)計(jì)考情分析統(tǒng)計(jì)圖表、方差、平均數(shù)、中位數(shù)2023年上海卷第14題,4分2022年甲卷第2題,5分2021年甲卷第2題,5分2021年I卷第9題,5分【命題預(yù)測(cè)】預(yù)測(cè)2024年高考,多以小題形式出現(xiàn),也有可能會(huì)將其滲透在解答題的表達(dá)之中,相對(duì)獨(dú)立.具體估計(jì)為:(1)以選擇題或填空題形式出現(xiàn),考查邏輯推理與數(shù)學(xué)運(yùn)算兩大核心素養(yǎng).(2)熱點(diǎn)是古典概型.古典概型2023年乙卷第9題,5分2023年甲卷第4題,5分2022年I卷第5題,5分2022年甲卷第6題,5分相互獨(dú)立事件和相互獨(dú)立事件的概率乘法公式2022年乙卷第10題,5分2021年天津卷第14題,5分回歸方程、正態(tài)分布2023年天津卷第7題,5分2021年II卷第5題,5分1、加強(qiáng)識(shí)圖能力,理解并記準(zhǔn)頻率分布直方圖與眾數(shù)、中位數(shù)及平均數(shù)的關(guān)系;折線圖注意上升趨勢(shì)以及波動(dòng)性;扇形圖數(shù)據(jù)可先用表格列出,再計(jì)算、判斷.2、在頻率分布直方圖中,注意小矩形的,小矩形的面積,所有小矩形的面積之和為1.3、求回歸方程(1)根據(jù)散點(diǎn)圖判斷兩變量是否線性相關(guān),如不是,應(yīng)通過(guò)換元構(gòu)造線性相關(guān).(2)利用公式,求出回歸系數(shù).(3)待定系數(shù)法:利用回歸直線過(guò)樣本點(diǎn)的中心求系數(shù).4、回歸方程的擬合效果,可以利用相關(guān)系數(shù)判斷,當(dāng)越趨近于1時(shí),兩變量的線性相關(guān)性越強(qiáng).5、比較幾個(gè)分類變量有關(guān)聯(lián)的可能性大小的方法(1)通過(guò)計(jì)算的大小判斷:越大,兩變量有關(guān)聯(lián)的可能性越大.(2)通過(guò)計(jì)算的大小判斷:越大,兩變量有關(guān)聯(lián)的可能性越大.6、獨(dú)立性檢驗(yàn)的一般步驟(1)根據(jù)樣本數(shù)據(jù)制成列聯(lián)表.(2)根據(jù)公式,計(jì)算的觀測(cè)值.(3)比較與臨界值的大小關(guān)系,進(jìn)行統(tǒng)計(jì)推斷.7、概率分布與不同知識(shí)背景結(jié)合考查對(duì)實(shí)際問(wèn)題的解決能力(1)與數(shù)列結(jié)合的實(shí)際問(wèn)題(2)與函數(shù)導(dǎo)數(shù)結(jié)合的實(shí)際問(wèn)題(3)與分段函數(shù)求最值、解不等式結(jié)合的實(shí)際問(wèn)題(4)與統(tǒng)計(jì)結(jié)合的實(shí)際問(wèn)題(5)與其他背景結(jié)合的實(shí)際問(wèn)題1.(2023?天津)調(diào)查某種花萼長(zhǎng)度和花瓣長(zhǎng)度,所得數(shù)據(jù)如圖所示,其中相關(guān)系數(shù),下列說(shuō)法正確的是A.花瓣長(zhǎng)度和花萼長(zhǎng)度沒(méi)有相關(guān)性 B.花瓣長(zhǎng)度和花萼長(zhǎng)度呈現(xiàn)負(fù)相關(guān) C.花瓣長(zhǎng)度和花萼長(zhǎng)度呈現(xiàn)正相關(guān) D.若從樣本中抽取一部分,則這部分的相關(guān)系數(shù)一定是0.8245【答案】【解析】相關(guān)系數(shù),且散點(diǎn)圖呈左下角到右上角的帶狀分布,花瓣長(zhǎng)度和花萼長(zhǎng)度呈正相關(guān).若從樣本中抽取一部分,則這部分的相關(guān)系數(shù)不一定是0.8245.故選:.2.(2023?乙卷)某學(xué)校舉辦作文比賽,共6個(gè)主題,每位參賽同學(xué)從中隨機(jī)抽取一個(gè)主題準(zhǔn)備作文,則甲、乙兩位參賽同學(xué)抽到不同主題概率為A. B. C. D.【答案】【解析】某學(xué)校舉辦作文比賽,共6個(gè)主題,每位參賽同學(xué)從中隨機(jī)抽取一個(gè)主題準(zhǔn)備作文,甲、乙兩位參賽同學(xué)構(gòu)成的基本事件總數(shù),其中甲、乙兩位參賽同學(xué)抽到不同主題包含的基本事件個(gè)數(shù),則甲、乙兩位參賽同學(xué)抽到不同主題概率為.故選:.3.(2023?甲卷)某校文藝部有4名學(xué)生,其中高一、高二年級(jí)各2名.從這4名學(xué)生中隨機(jī)選2名組織校文藝匯演,則這2名學(xué)生來(lái)自不同年級(jí)的概率為A. B. C. D.【答案】【解析】某校文藝部有4名學(xué)生,其中高一、高二年級(jí)各2名,從這4名學(xué)生中隨機(jī)選2名組織校文藝匯演,基本事件總數(shù),這2名學(xué)生來(lái)自不同年級(jí)包含的基本事件個(gè)數(shù),則這2名學(xué)生來(lái)自不同年級(jí)的概率為.故選:.4.(2023?上海)如圖為年上海市貨物進(jìn)出口總額的條形統(tǒng)計(jì)圖,則下列對(duì)于進(jìn)出口貿(mào)易額描述錯(cuò)誤的是A.從2018年開始,2021年的進(jìn)出口總額增長(zhǎng)率最大 B.從2018年開始,進(jìn)出口總額逐年增大 C.從2018年開始,進(jìn)口總額逐年增大 D.從2018年開始,2020年的進(jìn)出口總額增長(zhǎng)率最小【答案】【解析】顯然2021年相對(duì)于2020年進(jìn)出口額增量增加特別明顯,故最后一年的增長(zhǎng)率最大,對(duì);統(tǒng)計(jì)圖中的每一年條形圖的高度逐年增加,故對(duì);2020年相對(duì)于2019的進(jìn)口總額是減少的,故錯(cuò);顯然進(jìn)出口總額2021年的增長(zhǎng)率最大,而2020年相對(duì)于2019年的增量比2019年相對(duì)于2018年的增量小,且計(jì)算增長(zhǎng)率時(shí)前者的分母還大,故2020年的增長(zhǎng)率一定最小,正確.故選:.5.(2022?新高考Ⅰ)從2至8的7個(gè)整數(shù)中隨機(jī)取2個(gè)不同的數(shù),則這2個(gè)數(shù)互質(zhì)的概率為A. B. C. D.【答案】【解析】從2至8的7個(gè)整數(shù)中任取兩個(gè)數(shù)共有種方式,其中互質(zhì)的有:23,25,27,34,35,37,38,45,47,56,57,58,67,78,共14種,故所求概率為.故選:.6.(2022?乙卷)某棋手與甲、乙、丙三位棋手各比賽一盤,各盤比賽結(jié)果相互獨(dú)立.已知該棋手與甲、乙、丙比賽獲勝的概率分別為,,,且.記該棋手連勝兩盤的概率為,則A.與該棋手和甲、乙、丙的比賽次序無(wú)關(guān) B.該棋手在第二盤與甲比賽,最大 C.該棋手在第二盤與乙比賽,最大 D.該棋手在第二盤與丙比賽,最大【答案】【解析】選項(xiàng),已知棋手與甲、乙、丙比賽獲勝的概率不相等,所以受比賽次序影響,故錯(cuò)誤;設(shè)棋手在第二盤與甲比賽連贏兩盤的概率為,棋手在第二盤與乙比賽連贏兩盤的概率為,棋手在第二盤與丙比賽連贏兩盤的概率為,,同理可得,,,,,最大,即棋手在第二盤與丙比賽連贏兩盤的概率最大.故選:.7.(2022?甲卷)從分別寫有1,2,3,4,5,6的6張卡片中無(wú)放回隨機(jī)抽取2張,則抽到的2張卡片上的數(shù)字之積是4的倍數(shù)的概率為A. B. C. D.【答案】【解析】根據(jù)題意,從6張卡片中無(wú)放回隨機(jī)抽取2張,有,,,,,,,,,,,,,,,共15種取法,其中抽到的2張卡片上的數(shù)字之積是4的倍數(shù)有,,,,,,共6種情況,則抽到的2張卡片上的數(shù)字之積是4的倍數(shù)的概率;故選:.8.(2022?甲卷)某社區(qū)通過(guò)公益講座以普及社區(qū)居民的垃圾分類知識(shí).為了解講座效果,隨機(jī)抽取10位社區(qū)居民,讓他們?cè)谥v座前和講座后各回答一份垃圾分類知識(shí)問(wèn)卷,這10位社區(qū)居民在講座前和講座后問(wèn)卷答題的正確率如圖:則A.講座前問(wèn)卷答題的正確率的中位數(shù)小于 B.講座后問(wèn)卷答題的正確率的平均數(shù)大于 C.講座前問(wèn)卷答題的正確率的標(biāo)準(zhǔn)差小于講座后正確率的標(biāo)準(zhǔn)差 D.講座后問(wèn)卷答題的正確率的極差大于講座前正確率的極差【答案】【解析】對(duì)于,講座前問(wèn)卷答題的正確率從小到大為:,,,,,,,,,,講座前問(wèn)卷答題的正確率的中位數(shù)為:,故錯(cuò)誤;對(duì)于,講座后問(wèn)卷答題的正確率的平均數(shù)為:,故正確;對(duì)于,由圖形知講座前問(wèn)卷答題的正確率相對(duì)分散,講座后問(wèn)卷答題的正確率相對(duì)集中,講座前問(wèn)卷答題的正確率的標(biāo)準(zhǔn)差大于講座后正確率的標(biāo)準(zhǔn)差,故錯(cuò)誤;對(duì)于,講座后問(wèn)卷答題的正確率的極差為:,講座前正確率的極差為:,講座后問(wèn)卷答題的正確率的極差小于講座前正確率的極差,故錯(cuò)誤.故選:.9.(2021?甲卷)為了解某地農(nóng)村經(jīng)濟(jì)情況,對(duì)該地農(nóng)戶家庭年收入進(jìn)行抽樣調(diào)查,將農(nóng)戶家庭年收入的調(diào)查數(shù)據(jù)整理得到如下頻率分布直方圖:根據(jù)此頻率分布直方圖,下面結(jié)論中不正確的是A.該地農(nóng)戶家庭年收入低于4.5萬(wàn)元的農(nóng)戶比率估計(jì)為 B.該地農(nóng)戶家庭年收入不低于10.5萬(wàn)元的農(nóng)戶比率估計(jì)為 C.估計(jì)該地農(nóng)戶家庭年收入的平均值不超過(guò)6.5萬(wàn)元 D.估計(jì)該地有一半以上的農(nóng)戶,其家庭年收入介于4.5萬(wàn)元至8.5萬(wàn)元之間【答案】【解析】對(duì)于,該地農(nóng)戶家庭年收入低于4.5萬(wàn)元的農(nóng)戶比率為,故選項(xiàng)正確;對(duì)于,該地農(nóng)戶家庭年收入不低于10.5萬(wàn)元的農(nóng)戶比率為,故選項(xiàng)正確;對(duì)于,估計(jì)該地農(nóng)戶家庭年收入的平均值為萬(wàn)元,故選項(xiàng)錯(cuò)誤;對(duì)于,家庭年收入介于4.5萬(wàn)元至8.5萬(wàn)元之間的頻率為,故估計(jì)該地有一半以上的農(nóng)戶,其家庭年收入介于4.5萬(wàn)元至8.5萬(wàn)元之間,故選項(xiàng)正確.故選:.10.(2021?新高考Ⅱ)某物理量的測(cè)量結(jié)果服從正態(tài)分布,則下列結(jié)論中不正確的是A.越小,該物理量在一次測(cè)量中落在內(nèi)的概率越大 B.該物理量在一次測(cè)量中大于10的概率為0.5 C.該物理量在一次測(cè)量中小于9.99與大于10.01的概率相等 D.該物理量在一次測(cè)量中結(jié)果落在與落在的概率相等【答案】【解析】因?yàn)槟澄锢砹康臏y(cè)量結(jié)果服從正態(tài)分布,所以測(cè)量的結(jié)果的概率分布關(guān)于10對(duì)稱,且方差越小,則分布越集中,對(duì)于,越小,概率越集中在10左右,則該物理量一次測(cè)量結(jié)果落在內(nèi)的概率越大,故選項(xiàng)正確;對(duì)于,測(cè)量結(jié)果大于10的概率為0.5,故選項(xiàng)正確;對(duì)于,由于概率分布關(guān)于10對(duì)稱,所以測(cè)量結(jié)果大于10.01的概率等于小于9.99的概率,故選項(xiàng)正確;對(duì)于,由于概率分布是集中在10附近的,分布在10附近的區(qū)域大于分布在10附近的區(qū)域,故測(cè)量結(jié)果落在內(nèi)的概率大于落在內(nèi)的概率,故選項(xiàng)錯(cuò)誤.故選:.11.(多選題)(2021?新高考Ⅰ)有一組樣本數(shù)據(jù),,,,由這組數(shù)據(jù)得到新樣本數(shù)據(jù),,,,其中,2,,,為非零常數(shù),則A.兩組樣本數(shù)據(jù)的樣本平均數(shù)相同 B.兩組樣本數(shù)據(jù)的樣本中位數(shù)相同 C.兩組樣本數(shù)據(jù)的樣本標(biāo)準(zhǔn)差相同 D.兩組樣本數(shù)據(jù)的樣本極差相同【答案】【解析】對(duì)于,兩組數(shù)據(jù)的平均數(shù)的差為,故錯(cuò)誤;對(duì)于,兩組樣本數(shù)據(jù)的樣本中位數(shù)的差是,故錯(cuò)誤;對(duì)于,標(biāo)準(zhǔn)差,兩組樣本數(shù)據(jù)的樣本標(biāo)準(zhǔn)差相同,故正確;對(duì)于,,2,,,為非零常數(shù),的極差為,的極差為,兩組樣本數(shù)據(jù)的樣本極差相同,故正確.故選:.12.(2021?天津)甲、乙兩人在每次猜謎活動(dòng)中各猜一個(gè)謎語(yǔ),若一方猜對(duì)且另一方猜錯(cuò),則猜對(duì)的一方獲勝,否則本次平局.已知每次活動(dòng)中,甲、乙猜對(duì)的概率分別為和,且每次活動(dòng)中甲、乙猜對(duì)與否互不影響,各次活動(dòng)也互不影響,則一次活動(dòng)中,甲獲勝的概率為;3次活動(dòng)中,甲至少獲勝2次的概率為.【答案】;.【解析】一次活動(dòng)中,甲獲勝的概率為,次活動(dòng)中,甲至少獲勝2次的概率為.故答案為:;.考點(diǎn)一:抽樣方法與隨機(jī)數(shù)表【例1】(2024·青海西寧·高三統(tǒng)考期末)用分層抽樣的方法從某社區(qū)的500名男居民和700名女居民中選取12人參與社區(qū)服務(wù)滿意度調(diào)研,則女居民比男居民多選?。?/p>
)A.8人 B.6人 C.4人 D.2人【答案】D【解析】由題可知,男居民選取人,女居民選取人,則女居民比男居民多選取2人.故選:D.【變式11】(2024·全國(guó)·高三專題練習(xí))總體由編號(hào)為01,02,…,19,20的20個(gè)個(gè)體組成,利用下面的隨機(jī)數(shù)表選取5個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個(gè)數(shù)字,則選出來(lái)的第5個(gè)個(gè)體的編號(hào)為()7816657208026314070243699728019832049234493582003623486969387481A.08 B.02 C.63 D.01【答案】D【解析】根據(jù)題意,依次讀出的數(shù)據(jù)為65(舍去),72(舍去),08,02,63(舍去),14,07,02(舍去,重復(fù)),43(舍去),69(舍去),97(舍去),28(舍去),01.即第5個(gè)數(shù)字為01.故選:D.【變式12】(2024·海南省直轄縣級(jí)單位·高三??茧A段練習(xí))某飲料廠生產(chǎn)A,B兩種型號(hào)的飲料,每小時(shí)可生產(chǎn)兩種飲料共1000瓶,質(zhì)檢人員采用分層隨機(jī)抽樣的方法從這1000瓶中抽取了60瓶進(jìn)行質(zhì)量檢測(cè),其中抽到A型號(hào)飲料15瓶,則每小時(shí)B型號(hào)飲料的產(chǎn)量為(
)A.600瓶 B.750瓶 C.800瓶 D.900瓶【答案】B【解析】設(shè)每小時(shí)B型號(hào)飲料的產(chǎn)量為,所以有,故選:B考點(diǎn)二:統(tǒng)計(jì)圖表及其數(shù)字特征【例2】(多選題)(2024·江西·高三玉山一中校聯(lián)考階段練習(xí))江西省2017年到2022年常住人口變化圖如圖所示,則(
)A.江西省2017年到2022年這6年的常住人口在2019年取得最大值B.江西省2017年到2022年這6年的常住人口的極差為148.70萬(wàn)C.江西省2017年到2022年這6年的常住人口的中位數(shù)為4527.98萬(wàn)D.江西省2017年到2022年這6年的常住人口的第80百分位數(shù)為4647.60萬(wàn)【答案】ABD【解析】由圖可知,將江西省2017年到2022年這6年的常住人口(單位:萬(wàn))按照從小到大的順序排列為4517.40,4518.86,4527.98,4622.10,4647.60,4666.10,對(duì)于A項(xiàng),這6年的常住人口在2019年取得最大值,故A項(xiàng)正確;對(duì)于B項(xiàng),極差為萬(wàn),故B項(xiàng)正確;對(duì)于C項(xiàng),中位數(shù)為萬(wàn),故C項(xiàng)錯(cuò)誤;對(duì)于D項(xiàng),因?yàn)椋缘?0百分位數(shù)為4647.60萬(wàn),故D項(xiàng)正確.故選:ABD.【變式21】(多選題)(2024·廣東惠州·高三惠州一中??茧A段練習(xí))某地環(huán)境部門對(duì)轄區(qū)內(nèi)甲、乙、丙、丁四個(gè)地區(qū)的環(huán)境治理情況進(jìn)行檢查督導(dǎo),若一地區(qū)連續(xù)10天每天的空氣質(zhì)量指數(shù)均不大于100,則認(rèn)為該地區(qū)的環(huán)境治理達(dá)標(biāo),否則認(rèn)為該地區(qū)的環(huán)境治理不達(dá)標(biāo).根據(jù)連續(xù)10天檢測(cè)所得數(shù)據(jù)的數(shù)字特征推斷,環(huán)境治理一定達(dá)標(biāo)的地區(qū)是(
)A.甲地區(qū):平均數(shù)為90,方差為10 B.乙地區(qū):平均數(shù)為60,眾數(shù)為50C.丙地區(qū):中位數(shù)為50,極差為70 D.丁地區(qū):極差為20,80%分位數(shù)為80【答案】AD【解析】設(shè)每天的空氣質(zhì)量指數(shù)為(,2,…,10),則方差.對(duì)于A,由,得,若這10天中有1天的空氣質(zhì)量指數(shù)大于100,則必有,矛盾,所以這10天每天的空氣質(zhì)量指數(shù)都不大于100,故A正確;對(duì)于B,假設(shè)有8天為50,有1天為140,有1天為60,此時(shí)平均數(shù)為60,眾數(shù)為50,但該地區(qū)的環(huán)境治理不達(dá)標(biāo),故B錯(cuò)誤;對(duì)于C,假設(shè)第1天為120,后面9天為50,此時(shí)中位數(shù)為50,極差為70,但該地區(qū)的環(huán)境治理不達(dá)標(biāo),故錯(cuò)誤;對(duì)于D,如果最大值大于100,根據(jù)極差為20,則最小值大于80,這與分位數(shù)為80矛盾,故最大值不大于100,故D正確.故選:AD【變式22】(多選題)(2024·廣東珠?!じ呷楹J械谝恢袑W(xué)??计谀┠硢挝粸榱私饴毠そ】登闆r,采用分層隨機(jī)抽樣的方法從5000名職工中抽取了一個(gè)容量為100的樣本.其中,男性平均體重為64千克,方差為151;女性平均體重為56千克,方差為159,男女人數(shù)之比為,下列說(shuō)法正確的是(
)A.樣本為該單位的職工 B.每一位職工被抽中的可能性為C.該單位職工平均體重 D.單位職工的方差【答案】BCD【解析】A項(xiàng),樣本為該單位的職工的健康情況,所以A項(xiàng)錯(cuò)誤;B項(xiàng),由題可知,每一位職工被抽中的可能性為,所以B項(xiàng)正確;C項(xiàng),D項(xiàng),設(shè)設(shè)男性人數(shù)為,女性人數(shù)為,該單位全體人員體重的平均數(shù)為:,方差,所以C、D項(xiàng)正確;故選:BCD.【變式23】(多選題)(2024·廣東廣州·廣東實(shí)驗(yàn)中學(xué)??家荒#ǘ噙x)“搜索指數(shù)”是網(wǎng)民通過(guò)搜索引擎,以搜索關(guān)鍵詞的次數(shù)為基礎(chǔ)所得到的統(tǒng)計(jì)指標(biāo).“搜索指數(shù)”越大,表示網(wǎng)民該關(guān)鍵詞的搜索次數(shù)越多,對(duì)與該關(guān)鍵詞相關(guān)的信息關(guān)注度也越高.如圖是2018年9月到2019年2月這半年中,某個(gè)關(guān)鍵詞的搜索指數(shù)變化的走勢(shì)圖.根據(jù)該走勢(shì)圖,下列結(jié)論正確的是()A.這半年中,網(wǎng)民對(duì)與該關(guān)鍵詞相關(guān)的信息關(guān)注度呈周期性變化B.這半年中,網(wǎng)民對(duì)與該關(guān)鍵詞相關(guān)的信息關(guān)注度不斷減弱C.從網(wǎng)民對(duì)該關(guān)鍵詞的搜索指數(shù)來(lái)看,2018年10月份的方差大于11月份的方差D.從網(wǎng)民對(duì)該關(guān)鍵詞的搜索指數(shù)來(lái)看,2018年12月份的平均值大于2019年1月份的平均值【答案】CD【解析】在A中,這半年中,網(wǎng)民對(duì)該關(guān)鍵詞相關(guān)的信息關(guān)注度沒(méi)有規(guī)律,故A錯(cuò)誤;在B中,這半年中,網(wǎng)民對(duì)該關(guān)鍵詞相關(guān)的信息關(guān)注度呈現(xiàn)出一定的波動(dòng)性,而不是不斷減弱,故B錯(cuò)誤;在C中,從網(wǎng)民對(duì)該關(guān)鍵詞的搜索指數(shù)來(lái)看,2018年10月份的方差大于11月份的方差,故C正確;在D中,從網(wǎng)民對(duì)該關(guān)鍵詞的搜索指數(shù)來(lái)看,2018年12月份的平均值大于2019年1月份的平均值,故D正確.故選:CD.【變式24】(多選題)(2024·河南·模擬預(yù)測(cè))某地教師招聘考試,有3200人參加筆試,滿分為100分,筆試成績(jī)前20%(含20%)的考生有資格參加面試,所有考生的筆試成績(jī)和年齡分別如頻率分布直方圖和扇形統(tǒng)計(jì)圖所示,則(
)A.90后考生比00后考生多150人 B.筆試成績(jī)的60%分位數(shù)為80C.參加面試的考生的成績(jī)最低為86分 D.筆試成績(jī)的平均分為76分【答案】BD【解析】對(duì)于A中,由年齡的扇形統(tǒng)計(jì)圖,可得90后的考生有人,00后的考生有人,可得人,所以A不正確;對(duì)于B中,由頻率分布直方圖性質(zhì),可得,解得,則前三個(gè)矩形的面積和,所以試成績(jī)的分位數(shù)為分,所以B正確;對(duì)于C中,設(shè)面試成績(jī)的最低分為,由前三個(gè)矩形的面積和為,第四個(gè)矩形的面積為,則分,所以C不正確;對(duì)于D中,根據(jù)頻率分布直方圖的平均數(shù)的計(jì)算公式,可得考試的平均成績(jī)?yōu)椋悍?,所以D正確.故選:BD.考點(diǎn)三:傳統(tǒng)線性擬合【例3】某科學(xué)興趣小組的同學(xué)認(rèn)為生物都是由蛋白質(zhì)構(gòu)成的,高溫可以使蛋白質(zhì)變性失活,于是想初步探究某微生物的成活率與溫度的關(guān)系,微生物數(shù)量(個(gè))與溫度的部分?jǐn)?shù)據(jù)如下表:溫度481018微生物數(shù)量(個(gè))30221814由表中數(shù)據(jù)算得回歸方程為,預(yù)測(cè)當(dāng)溫度為時(shí),微生物數(shù)量為個(gè).【答案】9【解析】由表格數(shù)據(jù)可知,,,因?yàn)辄c(diǎn)在直線上,所以,即,故當(dāng)時(shí),,即預(yù)測(cè)當(dāng)溫度為時(shí),微生物數(shù)量為9個(gè).故答案為:9【變式31】(2024·廣東深圳·高三統(tǒng)考期末)某同學(xué)收集了變量,的相關(guān)數(shù)據(jù)如下:x0.5233.545y15為了研究,的相關(guān)關(guān)系,他由最小二乘法求得關(guān)于的線性回歸方程為,經(jīng)驗(yàn)證回歸直線正好經(jīng)過(guò)樣本點(diǎn),則.【答案】69【解析】因?yàn)榫€性回歸方程經(jīng)過(guò)樣本點(diǎn),所以.因?yàn)椋海?所以:.故答案為:69【變式32】某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):單價(jià)(元)銷量(件)由表中數(shù)據(jù),求得線性回歸方程,若在這些樣本點(diǎn)中任取一點(diǎn),則它在回歸直線右上方的概率為【答案】/【解析】由已知,,又樣本中心在回歸直線上,即,解得,所以回歸直線方程為,當(dāng)時(shí),,所以點(diǎn)在回歸直線上;當(dāng)時(shí),,所以點(diǎn)在回歸直線左下方;當(dāng)時(shí),,所以點(diǎn)在回歸直線右上方;當(dāng)時(shí),,所以點(diǎn)在回歸直線右上方;當(dāng)時(shí),,所以點(diǎn)在回歸直線右上方;當(dāng)時(shí),,所以點(diǎn)在回歸直線左下方;所以個(gè)樣本點(diǎn)中在回歸直線右上方的有個(gè),所以在這些樣本點(diǎn)中任取一點(diǎn),則它在回歸直線右上方的概率為,故答案為:.考點(diǎn)四:非線性擬合處理【例4】(2024·內(nèi)蒙古呼和浩特·高三統(tǒng)考期末)用模型擬合一組數(shù)據(jù)組,其中,設(shè),得變換后的線性回歸方程為,則(
)A. B. C.35 D.21【答案】B【解析】由題意得,故,即,故,解得.故選:B【變式41】(2024·四川宜賓·四川省宜賓市南溪第一中學(xué)校??寄M預(yù)測(cè))下表為某外來(lái)生物物種入侵某河流生態(tài)后的前3個(gè)月繁殖數(shù)量(單位:百只)的數(shù)據(jù),通過(guò)相關(guān)理論進(jìn)行分析,知可用回歸模型對(duì)與的關(guān)系進(jìn)行擬合,則根據(jù)該回歸模型,預(yù)測(cè)第7個(gè)月該物種的繁殖數(shù)量為(
)第個(gè)月123繁殖數(shù)量A.百只 B.百只C.百只 D.百只【答案】D【解析】由題意,兩邊取自然對(duì)數(shù)得,令,則,,,∵回歸直線必過(guò)樣本點(diǎn)的中心,∴,得,∴,則,當(dāng)時(shí),.故選:D.【變式42】(2024·全國(guó)·高三專題練習(xí))蘭溪楊梅從5月15日起開始陸續(xù)上市,據(jù)調(diào)查統(tǒng)計(jì),得到楊梅銷售價(jià)格(單位:Q元/千克)與上市時(shí)間t(單位:天)的數(shù)據(jù)如下表所示:時(shí)間t/(單位:天)102070銷售價(jià)格Q(單位:元/千克)10050100根據(jù)上表數(shù)據(jù),從下列函數(shù)模型中選取一個(gè)描述楊梅銷售價(jià)格Q與上市時(shí)間t的變化關(guān)系:.利用你選取的函數(shù)模型,在以下四個(gè)日期末,楊梅銷售價(jià)格最低的日期為(
)A.6月5日 B.6月15日 C.6月25日 D.7月5日【答案】C【解析】根據(jù)表中數(shù)據(jù),描述楊梅銷售價(jià)格Q與上市時(shí)間t的變化關(guān)系不可能是常數(shù)函數(shù)、也不可能是單調(diào)函數(shù),函數(shù)在時(shí)均為單調(diào)函數(shù),這與表格中的數(shù)據(jù)不吻合,所以應(yīng)選取進(jìn)行描述,將表中數(shù)據(jù)代入可得,解得,所以,,所以當(dāng)時(shí)楊梅銷售價(jià)格最低,而6月5日時(shí),6月15日時(shí),6月25日時(shí),7月5日時(shí),所以時(shí)楊梅銷售價(jià)格最低.故選:C.考點(diǎn)五:傳統(tǒng)獨(dú)立性檢驗(yàn)【例5】(2024·全國(guó)·高三專題練習(xí))為了解喜愛(ài)足球是否與性別有關(guān),隨機(jī)抽取了若干人進(jìn)行調(diào)查,抽取女性人數(shù)是男性的2倍,男性喜愛(ài)足球的人數(shù)占男性人數(shù)的,女性喜愛(ài)足球的人數(shù)占女性人數(shù)的,若本次調(diào)查得出“在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為喜愛(ài)足球與性別有關(guān)”的結(jié)論,則被調(diào)查的男性至少有(
)人0.100.050.010.0050.0012.7063.8415.6357.87910.828A.11 B.12 C.13 D.14【答案】B【解析】設(shè)男性人數(shù)為,依題意,得列聯(lián)表如下:喜愛(ài)足球不喜愛(ài)足球合計(jì)男性女性合計(jì)則的觀測(cè)值為,因?yàn)楸敬握{(diào)查得出“在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為喜愛(ài)足球與性別有關(guān)”的結(jié)論,于是,即,解得,而,因此故選:B【變式51】(2024·四川達(dá)州·統(tǒng)考一模)四川省將從2022年秋季入學(xué)的高一年級(jí)學(xué)生開始實(shí)行高考綜合改革,高考采用“3+1+2”模式,其中“1”為首選科目,即物理與歷史二選一.某校為了解學(xué)生的首選意愿,對(duì)部分高一學(xué)生進(jìn)行了抽樣調(diào)查,制作出如下兩個(gè)等高條形圖,根據(jù)條形圖信息,下列結(jié)論正確的是(
)A.樣本中選擇物理意愿的男生人數(shù)少于選擇歷史意愿的女生人數(shù)B.樣本中女生選擇歷史意愿的人數(shù)多于男生選擇歷史意愿的人數(shù)C.樣本中選擇物理學(xué)科的人數(shù)較多D.樣本中男生人數(shù)少于女生人數(shù)【答案】C【解析】根據(jù)等高條形圖圖1可知樣本中選擇物理學(xué)科的人數(shù)較多,故C正確;根據(jù)等高條形圖圖2可知樣本中男生人數(shù)多于女生人數(shù),故D錯(cuò)誤;樣本中選擇物理學(xué)科的人數(shù)多于選擇歷史意愿的人數(shù),而選擇物理意愿的男生比例高,選擇歷史意愿的女生比例低,所以樣本中選擇物理意愿的男生人數(shù)多于選擇歷史意愿的女生人數(shù),故A錯(cuò)誤;樣本中女生選擇歷史意愿的人數(shù)不一定多于男生選擇歷史意愿的人數(shù),故B錯(cuò)誤.故選:C.【變式52】(2024·浙江溫州·高三蒼南中學(xué)校聯(lián)考階段練習(xí))在新高考改革中,浙江省新高考實(shí)行的是7選3的模式,即語(yǔ)數(shù)外三門為必考科目,然后從物理、化學(xué)、生物、政治、歷史、地理、技術(shù)(含信息技術(shù)和通用技術(shù))7門課中選考3門.某校高二學(xué)生選課情況如下列聯(lián)表一和列聯(lián)表二(單位:人)選物理不選物理總計(jì)男生340110450女生140210350總計(jì)480320800表一選生物不選生物總計(jì)男生150300450女生150200350總計(jì)300500800表二試根據(jù)小概率值的獨(dú)立性檢驗(yàn),分析物理和生物選課與性別是否有關(guān)(
)附:A.選物理與性別有關(guān),選生物與性別有關(guān)B.選物理與性別無(wú)關(guān),選生物與性別有關(guān)C.選物理與性別有關(guān),選生物與性別無(wú)關(guān)D.選物理與性別無(wú)關(guān),選生物與性別無(wú)關(guān)【答案】C【解析】由題意,先分析物理課是否與性別有關(guān):根據(jù)表格數(shù)據(jù),結(jié)合題干表格數(shù)據(jù),,因此,有充分證據(jù)推斷選擇物理學(xué)科與性別有關(guān)再分析生物課是否與性別有關(guān):根據(jù)表格數(shù)據(jù),結(jié)合題干表格數(shù)據(jù),,因此,沒(méi)有充分證據(jù)推斷選擇生物學(xué)科與性別有關(guān)故選:C考點(diǎn)六:創(chuàng)新類定義統(tǒng)計(jì)【例6】(多選題)(2024·全國(guó)·模擬預(yù)測(cè))教育統(tǒng)計(jì)學(xué)中,為了解某考生的成績(jī)?cè)谌w考生成績(jī)中的位置,通常將考生的原始分?jǐn)?shù)轉(zhuǎn)化為標(biāo)準(zhǔn)分?jǐn)?shù).定義標(biāo)準(zhǔn)分?jǐn)?shù),其中為原始分?jǐn)?shù),為原始分?jǐn)?shù)的平均數(shù),為原始分?jǐn)?shù)的標(biāo)準(zhǔn)差.已知某校的一次數(shù)學(xué)考試,全體考生的平均成績(jī),標(biāo)準(zhǔn)差,轉(zhuǎn)化為標(biāo)準(zhǔn)分?jǐn)?shù)后,記平均成績(jī)?yōu)椋瑯?biāo)準(zhǔn)差為,則(
)A. B. C. D.【答案】BD【解析】根據(jù)平均數(shù)與方差公式,得,,即,.故選:BD.【變式61】(2024·湖北·高三校聯(lián)考開學(xué)考試)定義空間直角坐標(biāo)系中的任意點(diǎn)的“數(shù)”為:在點(diǎn)的坐標(biāo)中不同數(shù)字的個(gè)數(shù),如:,若點(diǎn)的坐標(biāo),則所有這些點(diǎn)的“數(shù)”的平均值為(
)A. B. C. D.【答案】A【解析】由題意,點(diǎn)的坐標(biāo)中不同數(shù)字的個(gè)數(shù),可分為三類:(1)恰有3個(gè)相同數(shù)字的排列為種,則共有個(gè);(2)恰有2個(gè)相同數(shù)字的排列為種,則共有個(gè);(3)恰有0個(gè)相同數(shù)字的排列為種,則共有個(gè);所以平均值為故選:A.【變式62】(2023·甘肅蘭州·統(tǒng)考一模)一組數(shù)據(jù)的平均數(shù)為,現(xiàn)定義這組數(shù)據(jù)的平均差.下圖是甲、乙兩組數(shù)據(jù)的頻率分布折線圖根據(jù)折線圖,判斷甲、乙兩組數(shù)據(jù)的平均差的大小關(guān)系是(
)A. B. C. D.無(wú)法確定【答案】C【解析】由給定的平均差公式可知:數(shù)據(jù)越集中于平均值附近,平均差越小.甲乙兩圖的縱坐標(biāo)表示的為頻率/組距,即指數(shù)據(jù)落在此處的概率,甲圖中,不同組距區(qū)間的概率相差不大,即指數(shù)據(jù)較為均勻的分布在各區(qū)間,而乙圖數(shù)據(jù)較為集中的分布在乙圖最高處指代的區(qū)間,其他區(qū)間分布的比較少,故乙圖平均差比較小.故選:C【變式63】(2024·江西九江·統(tǒng)考一模)恩格爾系數(shù)(Engel’sCoefficien)是食品支出總額占個(gè)人消費(fèi)支出總額的比重.居民可支配收入是居民可用于最終消費(fèi)支出和儲(chǔ)蓄的總和,即居民可用于自由支配的收入.如圖為我國(guó)2013年至2019年全國(guó)恩格爾系數(shù)和居民人均可支配收入的折線圖.給出三個(gè)結(jié)論:①恩格爾系數(shù)與居民人均可支配收入之間存在負(fù)相關(guān)關(guān)系;②一個(gè)國(guó)家的恩格爾系數(shù)越小,說(shuō)明這個(gè)國(guó)家越富裕;③一個(gè)家庭收入越少,則家庭收入中用來(lái)購(gòu)買食品的支出所占的比重就越小.其中正確的是(
)A.① B.② C.①② D.②③【答案】C【解析】由折線圖可知,恩格爾系數(shù)在逐年下降,居民人均可支配收入在逐年增加,故兩者之間存在負(fù)相關(guān)關(guān)系,結(jié)論①正確;恩格爾系數(shù)越小,居民人均可支配收入越多,經(jīng)濟(jì)越富裕,結(jié)論②正確;家庭收入越少,人們?yōu)榻鉀Q溫飽問(wèn)題,收入的大部分用來(lái)購(gòu)買食品,結(jié)論③錯(cuò)誤.故選:C考點(diǎn)七:正態(tài)分布【例7】已知某社區(qū)居民每周運(yùn)動(dòng)總時(shí)間為隨機(jī)變量(單位:小時(shí)),且,.現(xiàn)從該社區(qū)中隨機(jī)抽取3名居民,則至少有兩名居民每周運(yùn)動(dòng)總時(shí)間為5至6小時(shí)的概率為(
)A.0.642 B.0.648 C.0.722 D.0.748【答案】B【解析】由題意得,則,則,則至少有兩名居民每周運(yùn)動(dòng)總時(shí)間為5至6小時(shí)的概率為,故選:B.【變式71】(2024·重慶·高三重慶八中??茧A段練習(xí))阿鑫上學(xué)有時(shí)坐公交車,有時(shí)騎自行車.若阿鑫坐公交車用時(shí)X和騎自行車用時(shí)Y都服從正態(tài)分布,其密度曲線如圖所示,則以下結(jié)論錯(cuò)誤的是(
)A.Y的數(shù)據(jù)較X更集中B.若有34min可用,那么坐公交車不遲到的概率大C.若有38min可用,那么騎自行車不遲到的概率大D.【答案】D【解析】觀察圖象知,,對(duì)于A,的密度曲線瘦高、的密度曲線矮胖,即隨機(jī)變量的標(biāo)準(zhǔn)差小于的標(biāo)準(zhǔn)差,即,因此Y的數(shù)據(jù)較X更集中,A正確;對(duì)于B,顯然,則當(dāng)有34min可用時(shí),坐公交車不遲到的概率大,B正確;對(duì)于C,顯然,則當(dāng)有38min可用時(shí),騎自行車不遲到的概率大,C正確;對(duì)于D,顯然,因此,D錯(cuò)誤.故選:D【變式72】(2024·全國(guó)·模擬預(yù)測(cè))某早餐店發(fā)現(xiàn)加入網(wǎng)絡(luò)平臺(tái)后,每天小籠包的銷售量(單位:個(gè)),估計(jì)300天內(nèi)小籠包的銷售量約在950到1100個(gè)的天數(shù)大約是(
)(若隨機(jī)變量,則,,)A.236 B.246 C.270 D.275【答案】B【解析】由題可知,,,.所以300天內(nèi)小籠包的銷售量約在950到1100個(gè)的天數(shù)大約是天.故選:B.考點(diǎn)八:超幾何分布與二項(xiàng)分布【例8】(2023上·上海浦東新·高三統(tǒng)考期末)在100件產(chǎn)品中有90件一等品、10件二等品,從中隨機(jī)抽取3件產(chǎn)品,則恰好含1件二等品的概率為(結(jié)果精確到0.01).【答案】0.25【解析】從這批產(chǎn)品中抽取3件,則事件總數(shù)為,其中恰好有一件二等品的事件有,所以恰好有一件二等品的概率為.故答案為:0.25【變式81】(2023·浙江金華·校聯(lián)考模擬預(yù)測(cè))一次擲兩枚骰子,若兩枚骰子點(diǎn)數(shù)之和為4或5或6,則稱這是一次成功試驗(yàn).現(xiàn)進(jìn)行四次試驗(yàn),則恰出現(xiàn)一次成功試驗(yàn)的概率為.【答案】【解析】一次擲兩枚骰子,兩枚骰子點(diǎn)數(shù)之和為4的情況有3種,兩枚骰子點(diǎn)數(shù)之和為5的情況有4種,兩枚骰子點(diǎn)數(shù)之和為6的情況有5種,在一次試驗(yàn)中,出現(xiàn)成功試驗(yàn)的概率,設(shè)出現(xiàn)成功試驗(yàn)的次數(shù)為,則,所以重復(fù)做這樣的試驗(yàn)4次,則恰出現(xiàn)一次成功試驗(yàn)的概率為,故答案為:.【變式82】(2023上·江蘇常州·高三常州高級(jí)中學(xué)??奸_學(xué)考試)設(shè)隨機(jī)變量,記,.在研究的最大值時(shí),某學(xué)習(xí)小組發(fā)現(xiàn)并證明了如下正確結(jié)論:若為正整數(shù),當(dāng)時(shí),,此時(shí)這兩項(xiàng)概率均為最大值;若不為正整數(shù),則當(dāng)且僅當(dāng)取的整數(shù)部分時(shí),取最大值.某同學(xué)重復(fù)投擲一枚質(zhì)地均勻的骰子并實(shí)時(shí)記錄點(diǎn)數(shù)1出現(xiàn)的次數(shù).當(dāng)投擲到第20次時(shí),記錄到此時(shí)點(diǎn)數(shù)1出現(xiàn)4次,若繼續(xù)再進(jìn)行80次投擲試驗(yàn),則在這100次投擲試驗(yàn)中,點(diǎn)數(shù)1總共出現(xiàn)的次數(shù)為的概率最大.【答案】17【解析】繼續(xù)再進(jìn)行80次投擲試驗(yàn),出現(xiàn)點(diǎn)數(shù)為1次數(shù)服從二項(xiàng)分布,由,結(jié)合題中結(jié)論可知,時(shí)概率最大,即后面80次中出現(xiàn)13次點(diǎn)數(shù)1的概率最大,加上前面20次中的4次,所以出現(xiàn)17次的概率最大.故答案為:17.考點(diǎn)九:隨機(jī)變量的分布列、期望、方差【例9】(2024·全國(guó)·高三專題練習(xí))某同學(xué)參加學(xué)校數(shù)學(xué)知識(shí)競(jìng)賽,規(guī)定每個(gè)同學(xué)答20道題,已知該同學(xué)每道題答對(duì)的概率為0.6,每道題答對(duì)與否相互獨(dú)立.若答對(duì)一題得3分,答錯(cuò)一題扣1分,則該同學(xué)總得分的數(shù)學(xué)期望為,方差為.【答案】2876.8【解析】設(shè)該同學(xué)答對(duì)題目的數(shù)量為,因?yàn)樵撏瑢W(xué)每道題答對(duì)的概率為,共答道題,所以,所以,.設(shè)該同學(xué)總得分為,則,,.故答案為:;.【變式91】(2024·全國(guó)·高三專題練習(xí))有一批產(chǎn)品,其中有12件正品和4件次品,從中有放回地任取3件,若X表示取到次品的次數(shù),則,.【答案】【解析】由題意得服從二項(xiàng)分布,且每次取到次品的概率為,所以,所以,.故答案為:;.【變式92】(2023上·全國(guó)·高三專題練習(xí))有一批產(chǎn)品,其中有6件正品和4件次品,從中任取3件,其中次品的件數(shù)記為X,則次品件數(shù)X的期望為.【答案】1.2【解析】由題意知隨機(jī)變量X服從超幾何分布,其中,,,于是次品件數(shù)X的期望,故答案為:1.2考點(diǎn)十:古典概型【例10】(2024·全國(guó)·模擬預(yù)測(cè))某藝術(shù)展覽會(huì)的工作人員要將A,B,C三幅作品排成一排,則A,B這兩幅作品排在一起的概率為.【答案】【解析】根據(jù)題意A,B,C三幅作品排成一行,有ABC,ACB,BAC,BCA,CBA,CAB共6種情況,A,B這兩幅作品排在一起的情況有ABC,BAC,CBA,CAB,共4種,則A,B這兩幅作品排在一起的概率.故答案為:【變式101】(2024·全國(guó)·模擬預(yù)測(cè))如圖,三個(gè)開關(guān)控制著號(hào)四盞燈,其中開關(guān)控制著號(hào)燈,開關(guān)控制著號(hào)燈,開關(guān)控制著1,2,4號(hào)燈.開始時(shí),四盞燈都亮著.現(xiàn)先后按動(dòng)這三個(gè)開關(guān)中的兩個(gè)不同的開關(guān),則其中1號(hào)燈或2號(hào)燈亮的概率為.【答案】【解析】先后按動(dòng)中的兩個(gè)不同的開關(guān),有(種)按法.若要1號(hào)燈亮,則先按第一個(gè)開關(guān)時(shí),1號(hào)燈滅,再按第二個(gè)開關(guān)時(shí),1號(hào)燈亮,此時(shí)對(duì)應(yīng)的按法有2種,即;同理可得,若要2號(hào)燈亮,有,即2種按法.綜上,要1號(hào)燈或2號(hào)燈亮有(種)按法,故所求的概率.故答案為:【變式102】(2024·全國(guó)·模擬預(yù)測(cè))2023年10月18日,第三屆“一帶一路”國(guó)際合作高峰論壇在北京舉行.在“一帶一路”歡迎晚宴上,我國(guó)拿出特有的美食、美酒款待大家,讓國(guó)際貴賓們感受中國(guó)飲食文化、茶文化、酒文化.這次晚宴菜單中有“全家?!薄吧呈[牛肉”“北京烤鴨”“什錦鮮蔬”“冰花鍋貼”“蟹黃燒麥”“天鵝酥”“象形枇杷”.假設(shè)在上菜的過(guò)程中服務(wù)員隨機(jī)上這八道菜(每次只上一道菜),則“沙蔥牛肉”“北京烤鴨”相鄰的概率為.【答案】/0.25【解析】服務(wù)員隨機(jī)上這八道菜有種排法,“沙蔥牛肉”,“北京烤鴨”相鄰有種排法,所以所求概率.故答案為:.考點(diǎn)十一:條件概率與全概率【例11】(2024·山東濱州·高三統(tǒng)考期末)甲和乙兩個(gè)箱子中各裝有10個(gè)除顏色外完全相同的球,其中甲箱中有4個(gè)紅球、3個(gè)白球和3個(gè)黑球,乙箱中有5個(gè)紅球、2個(gè)白球和3個(gè)黑球.先從甲箱中隨機(jī)取出一球放入乙箱,分別用、和表示由甲箱取出的球是紅球、白球和黑球的事件;再?gòu)囊蚁渲须S機(jī)取出一球,用B表示由乙箱取出的球是紅球的事件,則【答案】【解析】由題意得,,,若發(fā)生,此時(shí)乙箱中有6個(gè)紅球,2個(gè)白球和3個(gè)黑球,則,先發(fā)生,此時(shí)乙箱中有5個(gè)紅球,3個(gè)白球和3個(gè)黑球,則,先發(fā)生,此時(shí)乙箱中有5個(gè)紅球,2個(gè)白球和4個(gè)黑球,則.,;.故答案為:【變式111】(2024·河南·模擬預(yù)測(cè))設(shè)同一隨機(jī)試驗(yàn)中的兩個(gè)事件A,B滿足,,,則.【答案】/0.375【解析】由,得;由全概率公式:,則.故答案是:.【變式112】某校高三1班第一小組有男生4人,女生2人,為提高中學(xué)生對(duì)勞動(dòng)教育重要性的認(rèn)識(shí),現(xiàn)需從中抽取2人參加學(xué)校開展的勞動(dòng)技能學(xué)習(xí),恰有一名女生參加勞動(dòng)學(xué)習(xí)的概率則為;在至少有一名女生參加勞動(dòng)學(xué)習(xí)的條件下,恰有一名女生參加勞動(dòng)學(xué)習(xí)的概率.【答案】【解析】由題設(shè),抽取2人,恰有一名女生參加,其概率,至少有一名女生參加,事件含恰有一名女生、2人都是女生,其概率,所以,在至少有一名女生參加條件下,恰有一名女生的概率.故答案為:,考點(diǎn)十二:概統(tǒng)結(jié)合問(wèn)題【例12】(2024·黑龍江大慶·鐵人中學(xué)??寄M預(yù)測(cè))如圖是一塊高爾頓板示意圖:在一塊木板.上釘著若干排互相平行但相互錯(cuò)開的圓柱形小木塊,小木塊之間留有適當(dāng)?shù)目障蹲鳛橥ǖ?,小球從上方的通道口落下后,將與層層小木塊碰撞,最后掉入下方的某一個(gè)球槽內(nèi).若小球下落過(guò)程中向左、向右落下的機(jī)會(huì)均等,則小球最終落入④號(hào)球槽的的概率為(
)A. B. C. D.【答案】D【解析】設(shè)這個(gè)球落入④號(hào)球槽為時(shí)間,落入④號(hào)球槽要經(jīng)過(guò)兩次向左,三次向右,所以.故選:D.【變式121】(2024·海南·統(tǒng)考模擬預(yù)測(cè))我國(guó)實(shí)行個(gè)人所得稅專項(xiàng)附加扣除制度,涉及子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息、住房租金、贍養(yǎng)老人等多項(xiàng)專項(xiàng)附加扣除.某單位老年、中年、青年員工分別有90人、270人、180人,現(xiàn)采用分層抽樣的方法,從該單位上述員工中抽取6人調(diào)查專項(xiàng)附加扣除的情況,再?gòu)倪@6人中任選2人,則選取的2人中恰有一名是中年員工的概率為(
)A. B. C. D.【答案】B【解析】由分層抽樣等比例性質(zhì)知:老年、中年、青年員工分別抽取了1人、3人、2人,所以6人中任選2人中恰有一名是中年員工的概率為.故選:B【變式122】(2024·四川綿陽(yáng)·鹽亭中學(xué)??寄M預(yù)測(cè))已知、的對(duì)應(yīng)值如下表所示:xy與具有較好的線性相關(guān)關(guān)系,可用回歸直線方程近似刻畫,則在的取值中任取兩個(gè)數(shù)均不大于的概率為(
)A. B. C. D.【答案】B【解析】由表格中的數(shù)據(jù)可得,,所以這組數(shù)據(jù)的樣本點(diǎn)的中心的坐標(biāo)為,又因?yàn)辄c(diǎn)在回歸直線上,所以,解得,所以的取值分別為、、、、,在這個(gè)數(shù)中,任取兩個(gè),取到的兩個(gè)數(shù)都不大于的概率為.故選:B.考點(diǎn)十三:傳統(tǒng)規(guī)則的概率問(wèn)題【例13】(2024·浙江寧波·效實(shí)中學(xué)??寄M預(yù)測(cè))盒中有5個(gè)小球,其中3個(gè)白球,2個(gè)黑球,從中任取個(gè)球,在取出的球中,黑球放回,白球涂黑后放回,此時(shí)盒中黑球的個(gè)數(shù)記為,則(
)A.,B.,C.,D.,【答案】C【解析】,,∵,∴.∵,,,∴,故選:C.【變式131】(2024·全國(guó)·高三專題練習(xí))端午節(jié)吃粽子是我國(guó)的傳統(tǒng)習(xí)俗,設(shè)一盤中裝有10個(gè)粽子,其中豆沙粽2個(gè),肉粽3個(gè),白粽5個(gè),這三種粽子的外觀完全相同,從中任意選取3個(gè),則三種粽子各取到1個(gè)的概率是A. B. C. D.【答案】C【解析】由題可先算出10個(gè)元素中取出3個(gè)的所有基本事件為;種情況;而三種粽子各取到1個(gè)有種情況,則可由古典概率得;考點(diǎn):古典概率的算法.【例14】(2024·廣東清遠(yuǎn)·高二統(tǒng)考期末)盒中有a個(gè)紅球,b個(gè)黑球,c個(gè)白球,今隨機(jī)地從中取出一個(gè),觀察其顏色后放回,并加上同色球d個(gè),再?gòu)暮兄谐槿∫磺颍瑒t第二次抽出的是黑球的概率是(
)A. B.C. D.【答案】A【解析】設(shè)事件“第一次抽出的是紅球”,事件“第一次抽出的是黑球”,事件“第一次抽出的是白球”,事件“第二次抽出的是黑球”.由全概率公式知由題意,,,,,,則,故選:A考點(diǎn)十四:新賽制概率問(wèn)題【例15】(2024·河南信陽(yáng)·高二統(tǒng)考期末)2022年卡塔爾世界杯決賽中,阿根廷隊(duì)與法國(guó)隊(duì)在120分鐘比賽中戰(zhàn)平,經(jīng)過(guò)四輪點(diǎn)球大戰(zhàn)阿根廷隊(duì)以總分戰(zhàn)勝法國(guó)隊(duì),第三次獲得世界杯冠軍.其中門將馬丁內(nèi)斯撲出法國(guó)隊(duì)員的點(diǎn)球,表現(xiàn)神勇,撲點(diǎn)球的難度一般比較大,假設(shè)罰點(diǎn)球的球員會(huì)等可能地隨機(jī)選擇球門的左、中、右三個(gè)方向射門,門將也會(huì)等可能地隨機(jī)選擇球門的左、中、右三個(gè)方向來(lái)?yè)潼c(diǎn)球,而且門將即使方向判斷正確也有的可能性撲不到球.若不考慮其他因素,在點(diǎn)球大戰(zhàn)中,門將在前四次撲出點(diǎn)球的個(gè)數(shù)X的期望為(
)A. B. C. D.2【答案】C【解析】依題意可得,門將每次可以撲出點(diǎn)球的概率為.門將在前四次撲出點(diǎn)球的個(gè)數(shù)X可能的取值為0,1,2,3,4.,,,1,2,3,4.期望.故選:C.【變式151】通過(guò)核酸檢測(cè)可以初步判定被檢測(cè)者是否感染新冠病毒,檢測(cè)方式分為單檢和混檢.單檢,是將一個(gè)人的采集拭子放入一個(gè)采樣管中單獨(dú)檢測(cè);混檢,是將多個(gè)人
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 智研咨詢發(fā)布:2024年中國(guó)變壓器行業(yè)市場(chǎng)現(xiàn)狀及投資前景分析報(bào)告
- 二零二五個(gè)人退伙合作協(xié)議(旅游文化產(chǎn)業(yè)特定)2篇
- 重慶市集成電路產(chǎn)業(yè)發(fā)展政策優(yōu)化研究
- RIS輔助的低軌衛(wèi)星通信系統(tǒng)覆蓋性能優(yōu)化策略研究
- 二零二五年度專業(yè)運(yùn)輸個(gè)人承包合同范本2篇
- 二零二五版養(yǎng)老保險(xiǎn)待遇領(lǐng)取資格終止?fàn)幾h處理合同3篇
- 二零二五年度個(gè)人金融衍生品交易合同范本2篇
- 二零二五版?zhèn)€人合伙健身俱樂(lè)部退伙會(huì)員權(quán)益協(xié)議2篇
- 二零二五年度個(gè)人商鋪?zhàn)赓U合同涉及租賃保證金退還細(xì)則2篇
- 近年來(lái)我國(guó)藥事管理工作的重大事件
- 波浪理論要點(diǎn)圖解完美版
- 金融交易數(shù)據(jù)分析與風(fēng)險(xiǎn)評(píng)估項(xiàng)目環(huán)境敏感性分析
- 牛頓環(huán)與劈尖實(shí)驗(yàn)論文
- 最高人民法院婚姻法司法解釋(二)的理解與適用
- 移動(dòng)商務(wù)內(nèi)容運(yùn)營(yíng)(吳洪貴)任務(wù)四 其他平臺(tái)載體的運(yùn)營(yíng)方式
- 關(guān)于醫(yī)保應(yīng)急預(yù)案
- 浙教版科學(xué)八年級(jí)下冊(cè)全冊(cè)課件
- 2022年中國(guó)止血材料行業(yè)概覽:發(fā)展現(xiàn)狀對(duì)比分析研究報(bào)告(摘要版) -頭豹
- GB/T 22482-2008水文情報(bào)預(yù)報(bào)規(guī)范
- 普通生物學(xué)筆記(陳閱增)完整版-PDF轉(zhuǎn)換成word轉(zhuǎn)換器
- 零售學(xué)(第二版)第01章零售導(dǎo)論
評(píng)論
0/150
提交評(píng)論