2023-2024學(xué)年山東省泰安市岱岳區(qū)市級名校中考數(shù)學(xué)押題試卷含解析_第1頁
2023-2024學(xué)年山東省泰安市岱岳區(qū)市級名校中考數(shù)學(xué)押題試卷含解析_第2頁
2023-2024學(xué)年山東省泰安市岱岳區(qū)市級名校中考數(shù)學(xué)押題試卷含解析_第3頁
2023-2024學(xué)年山東省泰安市岱岳區(qū)市級名校中考數(shù)學(xué)押題試卷含解析_第4頁
2023-2024學(xué)年山東省泰安市岱岳區(qū)市級名校中考數(shù)學(xué)押題試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年山東省泰安市岱岳區(qū)市級名校中考數(shù)學(xué)押題試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.的值為()A. B.- C.9 D.-92.下列實數(shù)0,,,π,其中,無理數(shù)共有()A.1個 B.2個 C.3個 D.4個3.如圖圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.4.某種植基地2016年蔬菜產(chǎn)量為80噸,預(yù)計2018年蔬菜產(chǎn)量達到100噸,求蔬菜產(chǎn)量的年平均增長率,設(shè)蔬菜產(chǎn)量的年平均增長率為x,則可列方程為()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1005.如圖,以正方形ABCD的邊CD為邊向正方形ABCD外作等邊△CDE,AC與BE交于點F,則∠AFE的度數(shù)是()A.135° B.120° C.60° D.45°6.某排球隊名場上隊員的身高(單位:)是:,,,,,.現(xiàn)用一名身高為的隊員換下場上身高為的隊員,與換人前相比,場上隊員的身高()A.平均數(shù)變小,方差變小 B.平均數(shù)變小,方差變大C.平均數(shù)變大,方差變小 D.平均數(shù)變大,方差變大7.三角形兩邊的長是3和4,第三邊的長是方程x2-12x+35=0的根,則該三角形的周長為()A.14 B.12 C.12或14 D.以上都不對8.如圖,在菱形ABCD中,E是AC的中點,EF∥CB,交AB于點F,如果EF=3,那么菱形ABCD的周長為()A.24 B.18 C.12 D.99.下列運算正確的是()A.a(chǎn)﹣3a=2a B.(ab2)0=ab2 C.= D.×=910.關(guān)于的方程有實數(shù)根,則整數(shù)的最大值是()A.6 B.7 C.8 D.9二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在□ABCD中,AC與BD交于點M,點F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點E是BC的中點,若點P以1cm/秒的速度從點A出發(fā),沿AD向點F運動;點Q同時以2cm/秒的速度從點C出發(fā),沿CB向點B運動.點P運動到F點時停止運動,點Q也同時停止運動.當(dāng)點P運動_____秒時,以點P、Q、E、F為頂點的四邊形是平行四邊形.12.如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A,點B,點C均落在格點上.(1)計算△ABC的周長等于_____.(2)點P、點Q(不與△ABC的頂點重合)分別為邊AB、BC上的動點,4PB=5QC,連接AQ、PC.當(dāng)AQ⊥PC時,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段AQ、PC,并簡要說明點P、Q的位置是如何找到的(不要求證明).___________________________.13.如圖,已知△ABC中,AB=AC=5,BC=8,將△ABC沿射線BC方向平移m個單位得到△DEF,頂點A,B,C分別與D,E,F(xiàn)對應(yīng),若以A,D,E為頂點的三角形是等腰三角形,且AE為腰,則m的值是______.14.在□ABCD中,按以下步驟作圖:①以點B為圓心,以BA長為半徑作弧,交BC于點E;②分別以A,E為圓心,大于AE的長為半徑作弧,兩弧交于點F;③連接BF,延長線交AD于點G.若∠AGB=30°,則∠C=_______°.15.如圖,點A是雙曲線y=﹣在第二象限分支上的一個動點,連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,點C在第一象限,隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y=上運動,則k的值為_____.16.如圖,在平面直角坐標(biāo)系中,已知點A(1,1),以點O為旋轉(zhuǎn)中心,將點A逆時針旋轉(zhuǎn)到點B的位置,則的長為_____.三、解答題(共8題,共72分)17.(8分)某新建小區(qū)要修一條1050米長的路,甲、乙兩個工程隊想承建這項工程.經(jīng)了解得到以下信息(如表):工程隊每天修路的長度(米)單獨完成所需天數(shù)(天)每天所需費用(元)甲隊30n600乙隊mn﹣141160(1)甲隊單獨完成這項工程所需天數(shù)n=,乙隊每天修路的長度m=(米);(2)甲隊先修了x米之后,甲、乙兩隊一起修路,又用了y天完成這項工程(其中x,y為正整數(shù)).①當(dāng)x=90時,求出乙隊修路的天數(shù);②求y與x之間的函數(shù)關(guān)系式(不用寫出x的取值范圍);③若總費用不超過22800元,求甲隊至少先修了多少米.18.(8分)嘉淇在做家庭作業(yè)時,不小心將墨汁弄倒,恰好覆蓋了題目的一部分:計算:(﹣7)0+|1﹣|+()﹣1﹣□+(﹣1)2018,經(jīng)詢問,王老師告訴題目的正確答案是1.(1)求被覆蓋的這個數(shù)是多少?(2)若這個數(shù)恰好等于2tan(α﹣15)°,其中α為三角形一內(nèi)角,求α的值.19.(8分)如圖,直線y=﹣x+4與x軸交于點A,與y軸交于點B.拋物線y=﹣x2+bx+c經(jīng)過A,B兩點,與x軸的另外一個交點為C填空:b=,c=,點C的坐標(biāo)為.如圖1,若點P是第一象限拋物線上的點,連接OP交直線AB于點Q,設(shè)點P的橫坐標(biāo)為m.PQ與OQ的比值為y,求y與m的數(shù)學(xué)關(guān)系式,并求出PQ與OQ的比值的最大值.如圖2,若點P是第四象限的拋物線上的一點.連接PB與AP,當(dāng)∠PBA+∠CBO=45°時.求△PBA的面積.20.(8分)如圖,點A,C,B,D在同一條直線上,BE∥DF,∠A=∠F,AB=FD,求證:AE=FC.21.(8分)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點,且頂點在BC邊上,對稱軸交BE于點F,點D,E的坐標(biāo)分別為(3,0),(0,1).(1)求拋物線的解析式;(2)猜想△EDB的形狀并加以證明;(3)點M在對稱軸右側(cè)的拋物線上,點N在x軸上,請問是否存在以點A,F(xiàn),M,N為頂點的四邊形是平行四邊形?若存在,請求出所有符合條件的點M的坐標(biāo);若不存在,請說明理由.22.(10分)先化簡,再求值:(1+)÷,其中x=+1.23.(12分)如圖,在四邊形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四邊形ABCD的周長.24.計算:﹣14﹣2×(﹣3)2+÷(﹣)如圖,小林將矩形紙片ABCD沿折痕EF翻折,使點C、D分別落在點M、N的位置,發(fā)現(xiàn)∠EFM=2∠BFM,求∠EFC的度數(shù).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】【分析】根據(jù)絕對值的意義進行求解即可得.【詳解】表示的是的絕對值,數(shù)軸上表示的點到原點的距離是,即的絕對值是,所以的值為,故選A.【點睛】本題考查了絕對值的意義,熟練掌握絕對值的意義是解題的關(guān)鍵.2、B【解析】

根據(jù)無理數(shù)的概念可判斷出無理數(shù)的個數(shù).【詳解】解:無理數(shù)有:,.故選B.【點睛】本題主要考查了無理數(shù)的定義,注意帶根號的要開不盡方才是無理數(shù),無限不循環(huán)小數(shù)為無理數(shù).3、A【解析】A.是軸對稱圖形,是中心對稱圖形,故本選項正確;B.是中心對稱圖,不是軸對稱圖形,故本選項錯誤;C.不是中心對稱圖,是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,是中心對稱圖形,故本選項錯誤。故選A.4、A【解析】

利用增長后的量=增長前的量×(1+增長率),設(shè)平均每次增長的百分率為x,根據(jù)“從80噸增加到100噸”,即可得出方程.【詳解】由題意知,蔬菜產(chǎn)量的年平均增長率為x,根據(jù)2016年蔬菜產(chǎn)量為80噸,則2017年蔬菜產(chǎn)量為80(1+x)噸,2018年蔬菜產(chǎn)量為80(1+x)(1+x)噸,預(yù)計2018年蔬菜產(chǎn)量達到100噸,即:80(1+x)2=100,故選A.【點睛】本題考查了一元二次方程的應(yīng)用(增長率問題).解題的關(guān)鍵在于理清題目的含義,找到2017年和2018年的產(chǎn)量的代數(shù)式,根據(jù)條件找準(zhǔn)等量關(guān)系式,列出方程.5、B【解析】

易得△ABF與△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度數(shù)即可.【詳解】∵四邊形ABCD是正方形,∴AB=AD,∠BAF=∠DAF,∴△ABF≌△ADF,∴∠AFD=∠AFB,∵CB=CE,∴∠CBE=∠CEB,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°,∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故選B.【點睛】此題考查正方形的性質(zhì),熟練掌握正方形及等邊三角形的性質(zhì),會運用其性質(zhì)進行一些簡單的轉(zhuǎn)化.6、A【解析】分析:根據(jù)平均數(shù)的計算公式進行計算即可,根據(jù)方差公式先分別計算出甲和乙的方差,再根據(jù)方差的意義即可得出答案.詳解:換人前6名隊員身高的平均數(shù)為==188,方差為S2==;換人后6名隊員身高的平均數(shù)為==187,方差為S2==∵188>187,>,∴平均數(shù)變小,方差變小,故選:A.點睛:本題考查了平均數(shù)與方差的定義:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.7、B【解析】

解方程得:x=5或x=1.當(dāng)x=1時,3+4=1,不能組成三角形;當(dāng)x=5時,3+4>5,三邊能夠組成三角形.∴該三角形的周長為3+4+5=12,故選B.8、A【解析】【分析】易得BC長為EF長的2倍,那么菱形ABCD的周長=4BC問題得解.【詳解】∵E是AC中點,∵EF∥BC,交AB于點F,∴EF是△ABC的中位線,∴BC=2EF=2×3=6,∴菱形ABCD的周長是4×6=24,故選A.【點睛】本題考查了三角形中位線的性質(zhì)及菱形的周長公式,熟練掌握相關(guān)知識是解題的關(guān)鍵.9、D【解析】

直接利用合并同類項法則以及二次根式的性質(zhì)、二次根式乘法、零指數(shù)冪的性質(zhì)分別化簡得出答案.【詳解】解:A、a﹣3a=﹣2a,故此選項錯誤;B、(ab2)0=1,故此選項錯誤;C、故此選項錯誤;D、×=9,正確.故選D.【點睛】此題主要考查了合并同類項以及二次根式的性質(zhì)、二次根式乘法、零指數(shù)冪的性質(zhì),正確把握相關(guān)性質(zhì)是解題關(guān)鍵.10、C【解析】

方程有實數(shù)根,應(yīng)分方程是一元二次方程與不是一元二次方程,兩種情況進行討論,當(dāng)不是一元二次方程時,a-6=0,即a=6;當(dāng)是一元二次方程時,有實數(shù)根,則△≥0,求出a的取值范圍,取最大整數(shù)即可.【詳解】當(dāng)a-6=0,即a=6時,方程是-1x+6=0,解得x=;

當(dāng)a-6≠0,即a≠6時,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,

取最大整數(shù),即a=1.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、3或1【解析】

由四邊形ABCD是平行四邊形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可證得FB=FD,求出AD的長,得出CE的長,設(shè)當(dāng)點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據(jù)題意列出方程并解方程即可得出結(jié)果.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵點E是BC的中點,∴CE=BC=AD=9cm,要使點P、Q、E、F為頂點的四邊形是平行四邊形,則PF=EQ即可,設(shè)當(dāng)點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據(jù)題意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案為3或1.【點睛】本題考查了平行四邊形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)以及一元一次方程的應(yīng)用等知識.注意掌握分類討論思想的應(yīng)用是解此題的關(guān)鍵.12、12連接DE與BC與交于點Q,連接DF與BC交于點M,連接GH與格線交于點N,連接MN與AB交于P.【解析】

(1)利用勾股定理求出AB,從而得到△ABC的周長;(2)取格點D,E,F(xiàn),G,H,連接DE與BC交于點Q;連接DF與BC交于點M;連接GH與格線交于點N;連接MN與AB交于點P;連接AP,CQ即為所求.【詳解】解:(1)∵AC=3,BC=4,∠C=90o,∴根據(jù)勾股定理得AB=5,∴△ABC的周長=5+4+3=12.(2)取格點D,E,F(xiàn),G,H,連接DE與BC交于點Q;連接DF與BC交于點M;連接GH與格線交于點N;連接MN與AB交于點P;連接AQ,CP即為所求。故答案為:(1)12;(2)連接DE與BC與交于點Q,連接DF與BC交于點M,連接GH與格線交于點N,連接MN與AB交于P.【點睛】本題涉及的知識點有:勾股定理,三角形中位線定理,軸對稱之線路最短問題.13、或5或1.【解析】

根據(jù)以點A,D,E為頂點的三角形是等腰三角形分類討論即可.【詳解】解:如圖(1)當(dāng)在△ADE中,DE=5,當(dāng)AD=DE=5時為等腰三角形,此時m=5.(2)又AC=5,當(dāng)平移m個單位使得E、C點重合,此時AE=ED=5,平移的長度m=BC=1,(3)可以AE、AD為腰使ADE為等腰三角形,設(shè)平移了m個單位:則AN=3,AC=,AD=m,得:,得m=,綜上所述:m為或5或1,所以答案:或5或1.【點睛】本題主要考查等腰三角形的性質(zhì),注意分類討論的完整性.14、120【解析】

首先證明∠ABG=∠GBE=∠AGB=30°,可得∠ABC=60°,再利用平行四邊形的鄰角互補即可解決問題.【詳解】由題意得:∠GBA=∠GBE,∵AD∥BC,∴∠AGB=∠GBE=30°,∴∠ABC=60°,∵AB∥CD,∴∠C=180°-∠ABC=120°,故答案為:120.【點睛】本題考查基本作圖、平行四邊形的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識15、1【解析】

根據(jù)題意得出△AOD∽△OCE,進而得出,即可得出k=EC×EO=1.【詳解】解:連接CO,過點A作AD⊥x軸于點D,過點C作CE⊥x軸于點E,∵連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=10°,則∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=tan60°=,∴==1,∵點A是雙曲線y=-在第二象限分支上的一個動點,∴S△AOD=×|xy|=,∴S△EOC=,即×OE×CE=,∴k=OE×CE=1,故答案為1.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)的交點以及相似三角形的判定與性質(zhì),正確添加輔助線,得出△AOD∽△OCE是解題關(guān)鍵.16、.【解析】

由點A(1,1),可得OA的長,點A在第一象限的角平分線上,可得∠AOB=45°,,再根據(jù)弧長公式計算即可.【詳解】∵A(1,1),∴OA=,點A在第一象限的角平分線上,∵以點O為旋轉(zhuǎn)中心,將點A逆時針旋轉(zhuǎn)到點B的位置,∴∠AOB=45°,∴的長為=,故答案為:.【點睛】本題考查坐標(biāo)與圖形變化——旋轉(zhuǎn),弧長公式,熟練掌握旋轉(zhuǎn)的性質(zhì)以及弧長公式是解題的關(guān)鍵.本題中求出OA=以及∠AOB=45°也是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)35,50;(2)①12;②y=﹣x+;③150米.【解析】

(1)用總長度÷每天修路的長度可得n的值,繼而可得乙隊單獨完成時間,再用總長度÷乙單獨完成所需時間可得乙隊每天修路的長度m;(2)①根據(jù):甲隊先修建的長度+(甲隊每天修建長度+乙隊每天修建長度)×兩隊合作時間=總長度,列式計算可得;②由①中的相等關(guān)系可得y與x之間的函數(shù)關(guān)系式;③根據(jù):甲隊先修x米的費用+甲、乙兩隊每天費用×合作時間≤22800,列不等式求解可得.【詳解】解:(1)甲隊單獨完成這項工程所需天數(shù)n=1050÷30=35(天),則乙單獨完成所需天數(shù)為21天,∴乙隊每天修路的長度m=1050÷21=50(米),故答案為35,50;(2)①乙隊修路的天數(shù)為=12(天);②由題意,得:x+(30+50)y=1050,∴y與x之間的函數(shù)關(guān)系式為:y=﹣x+;③由題意,得:600×+(600+1160)(﹣x+)≤22800,解得:x≥150,答:若總費用不超過22800元,甲隊至少先修了150米.【點睛】本題考查了一次函數(shù)的應(yīng)用,解題的關(guān)鍵是熟練的掌握一次函數(shù)的應(yīng)用.18、(1)2;(2)α=75°.【解析】

(1)直接利用絕對值的性質(zhì)以及負(fù)指數(shù)冪的性質(zhì)以及零指數(shù)冪的性質(zhì)分別化簡得出答案;(2)直接利用特殊角的三角函數(shù)值計算得出答案.【詳解】解:(1)原式=1+﹣1+﹣□+1=1,∴□=1+﹣1++1﹣1=2;(2)∵α為三角形一內(nèi)角,∴0°<α<180°,∴﹣15°<(α﹣15)°<165°,∵2tan(α﹣15)°=,∴α﹣15°=60°,∴α=75°.【點睛】此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關(guān)鍵.19、(3)3,2,C(﹣2,4);(2)y=﹣m2+m,PQ與OQ的比值的最大值為;(3)S△PBA=3.【解析】

(3)通過一次函數(shù)解析式確定A、B兩點坐標(biāo),直接利用待定系數(shù)法求解即可得到b,c的值,令y=4便可得C點坐標(biāo).

(2)分別過P、Q兩點向x軸作垂線,通過PQ與OQ的比值為y以及平行線分線段成比例,找到,設(shè)點P坐標(biāo)為(m,-m2+m+2),Q點坐標(biāo)(n,-n+2),表示出ED、OD等長度即可得y與m、n之間的關(guān)系,再次利用即可求解.

(3)求得P點坐標(biāo),利用圖形割補法求解即可.【詳解】(3)∵直線y=﹣x+2與x軸交于點A,與y軸交于點B.∴A(2,4),B(4,2).又∵拋物線過B(4,2)∴c=2.把A(2,4)代入y=﹣x2+bx+2得,4=﹣×22+2b+2,解得,b=3.∴拋物線解析式為,y=﹣x2+x+2.令﹣x2+x+2=4,解得,x=﹣2或x=2.∴C(﹣2,4).(2)如圖3,分別過P、Q作PE、QD垂直于x軸交x軸于點E、D.設(shè)P(m,﹣m2+m+2),Q(n,﹣n+2),則PE=﹣m2+m+2,QD=﹣n+2.又∵=y(tǒng).∴n=.又∵,即把n=代入上式得,整理得,2y=﹣m2+2m.∴y=﹣m2+m.ymax=.即PQ與OQ的比值的最大值為.(3)如圖2,∵∠OBA=∠OBP+∠PBA=25°∠PBA+∠CBO=25°∴∠OBP=∠CBO此時PB過點(2,4).設(shè)直線PB解析式為,y=kx+2.把點(2,4)代入上式得,4=2k+2.解得,k=﹣2∴直線PB解析式為,y=﹣2x+2.令﹣2x+2=﹣x2+x+2整理得,x2﹣3x=4.解得,x=4(舍去)或x=5.當(dāng)x=5時,﹣2x+2=﹣2×5+2=﹣7∴P(5,﹣7).過P作PH⊥cy軸于點H.則S四邊形OHPA=(OA+PH)?OH=(2+5)×7=24.S△OAB=OA?OB=×2×2=7.S△BHP=PH?BH=×5×3=35.∴S△PBA=S四邊形OHPA+S△OAB﹣S△BHP=24+7﹣35=3.【點睛】本題考查了函數(shù)圖象與坐標(biāo)軸交點坐標(biāo)的確定,以及利用待定系數(shù)法求解拋物線解析式常數(shù)的方法,再者考查了利用數(shù)形結(jié)合的思想將圖形線段長度的比化為坐標(biāo)軸上點之間的線段長度比的思維能力.還考查了運用圖形割補法求解坐標(biāo)系內(nèi)圖形的面積的方法.20、證明見解析.【解析】由已知條件BE∥DF,可得出∠ABE=∠D,再利用ASA證明△ABE≌△FDC即可.證明:∵BE∥DF,∴∠ABE=∠D,在△ABE和△FDC中,∠ABE=∠D,AB=FD,∠A=∠F∴△ABE≌△FDC(ASA),∴AE=FC.“點睛”此題主要考查全等三角形的判定與性質(zhì)和平行線的性質(zhì)等知識點的理解和掌握,此題的關(guān)鍵是利用平行線的性質(zhì)求證△ABC和△FDC全等.21、(1)y=﹣x2+3x;(2)△EDB為等腰直角三角形;證明見解析;(3)(,2)或(,﹣2).【解析】

(1)由條件可求得拋物線的頂點坐標(biāo)及A點坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由B、D、E的坐標(biāo)可分別求得DE、BD和BE的長,再利用勾股定理的逆定理可進行判斷;(3)由B、E的坐標(biāo)可先求得直線BE的解析式,則可求得F點的坐標(biāo),當(dāng)AF為邊時,則有FM∥AN且FM=AN,則可求得M點的縱坐標(biāo),代入拋物線解析式可求得M點坐標(biāo);當(dāng)AF為對角線時,由A、F的坐標(biāo)可求得平行四邊形的對稱中心,可設(shè)出M點坐標(biāo),則可表示出N點坐標(biāo),再由N點在x軸上可得到關(guān)于M點坐標(biāo)的方程,可求得M點坐標(biāo).【詳解】解:(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵拋物線經(jīng)過O、A兩點,∴拋物線頂點坐標(biāo)為(2,3),∴可設(shè)拋物線解析式為y=a(x﹣2)2+3,把A點坐標(biāo)代入可得0=a(4﹣2)2+3,解得a=﹣,∴拋物線解析式為y=﹣(x﹣2)2+3,即y=﹣x2+3x;(2)△EDB為等腰直角三角形.證明:由(1)可知B(4,3),且D(3,0),E(0,1),∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,∴DE2+BD2=BE2,且DE=BD,∴△EDB為等腰直角三角形;(3)存在.理由如下:設(shè)直線BE解析式為y=kx+b,把B、E坐標(biāo)代入可得,解得,∴直線BE解析式為y=x+1,當(dāng)x=2時,y=2,∴F(2,2),①當(dāng)AF為平行四邊形的一邊時,則M到x軸的距離與F到x軸的距離相等,即M到x軸的距離為2,∴點M的縱坐標(biāo)為2或﹣2,在y=﹣x2+3x中,令y=2可得2=﹣x2+3x,解得x=,∵點M在拋物線對稱軸右側(cè),∴x>2,∴x=,∴M點坐標(biāo)為(,2);在y=﹣x2+3x中,令y=﹣2可得﹣2=﹣x2+3x,解得x=,∵點M在拋物線對稱軸右側(cè),∴x>2,∴x=,∴M點坐標(biāo)為(,﹣2);②當(dāng)AF為平行四邊形的對角線時,∵A(4,0),F(xiàn)(2,2),∴線段AF的中點為(3,1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論