



下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第32講復數(shù)思維導圖知識梳理1.復數(shù)的有關(guān)概念(1)復數(shù)的概念:形如a+bi(a,b∈R)的數(shù)叫復數(shù),其中a,b分別是它的實部和虛部.若b=0,則a+bi為實數(shù);若b≠0,則a+bi為虛數(shù);若a=0且b≠0,則a+bi為純虛數(shù).(2)復數(shù)相等:a+bi=c+di?a=c且b=d(a,b,c,d∈R).(3)共軛復數(shù):a+bi與c+di共軛?a=c,b=-d(a,b,c,d∈R).(4)復數(shù)的模:向量eq\o(OZ,\s\up7(→))的模r叫做復數(shù)z=a+bi(a,b∈R)的模,記作|z|或|a+bi|,即|z|=|a+bi|=eq\r(a2+b2).2.復數(shù)的幾何意義(1)復數(shù)z=a+bi復平面內(nèi)的點Z(a,b)(a,b∈R).(2)復數(shù)z=a+bi(a,b∈R)平面向量eq\o(OZ,\s\up7(→)).3.復數(shù)的運算(1)復數(shù)的加、減、乘、除運算法則設z1=a+bi,z2=c+di(a,b,c,d∈R),則①加法:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i;②減法:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i;③乘法:z1·z2=(a+bi)·(c+di)=(ac-bd)+(ad+bc)i;④除法:eq\f(z1,z2)=eq\f(a+bi,c+di)=eq\f(a+bic-di,c+dic-di)=eq\f(ac+bd,c2+d2)+eq\f(bc-ad,c2+d2)i(c+di≠0).(2)復數(shù)加法的運算定律設z1,z2,z3∈C,則復數(shù)加法滿足以下運算律:①交換律:z1+z2=z2+z1;②結(jié)合律:(z1+z2)+z3=z1+(z2+z3).題型歸納題型1復數(shù)的有關(guān)概念【例1-1】復數(shù)的虛部是A. B. C. D.【例1-2】已知復數(shù)滿足,且為純虛數(shù),則A. B. C. D.【例1-3】已知復數(shù),則的共軛復數(shù)等于A.0 B. C. D.【跟蹤訓練1-1】若的實部為,的虛部為,則A.6 B.8 C.7 D.4【跟蹤訓練1-2】已知復數(shù)是純虛數(shù),則實數(shù)A. B. C.0 D.1【跟蹤訓練1-3】已知復數(shù)為虛數(shù)單位),則的虛部為A. B. C. D.【跟蹤訓練1-4】若復數(shù)是純虛數(shù),其中是實數(shù),則.【名師指導】解決復數(shù)概念問題的方法及注意事項(1)求一個復數(shù)的實部與虛部,只需將已知的復數(shù)化為代數(shù)形式z=a+bi(a,b∈R),則該復數(shù)的實部為a,虛部為b.(2)求一個復數(shù)的共軛復數(shù),只需將此復數(shù)整理成標準的代數(shù)形式,實部不變,虛部變?yōu)橄喾磾?shù),即得原復數(shù)的共軛復數(shù).復數(shù)z1=a+bi與z2=c+di共軛?a=c,b=-d(a,b,c,d∈R).題型2復數(shù)的幾何意義【例2-1】已知復數(shù)滿足為虛數(shù)單位),則復數(shù)在復平面內(nèi)對應的點所在的象限為A.第一象限 B.第二象限 C.第三象限 D.第四象限【例2-2】在復平面內(nèi),是坐標原點,向量對應的復數(shù)是,若點關(guān)于實軸的對稱點為點,則向量對應的復數(shù)的模為.【跟蹤訓練2-1】若復數(shù),則復數(shù)在復平面內(nèi)對應的點位于A.第一象限 B.第二象限 C.第三象限 D.第四象限【跟蹤訓練2-2】復數(shù),則的共軛復數(shù)在復平面內(nèi)所對應的點位于A.第一象限 B.第二象限 C.第三象限 D.第四象限【跟蹤訓練2-3】復數(shù)滿足,則在復平面表示的點所在的象限為A.第一象限 B.第二象限 C.第三象限 D.第四象限【跟蹤訓練2-4】已知復數(shù),則在復平面內(nèi)對應的點位于A.第一象限 B.第二象限 C.第三象限 D.第四象限【跟蹤訓練2-5】已知復數(shù)是虛數(shù)單位),則復數(shù)在復平面內(nèi)對應的點位于A.第一象限 B.第二象限 C.第三象限 D.第四象限【跟蹤訓練2-6】已知復數(shù),則的共軛復數(shù)在復平面內(nèi)對應的點位于第象限.【名師指導】1.準確理解復數(shù)的幾何意義(1)復數(shù)z、復平面上的點Z及向量eq\o(OZ,\s\up7(→))相互聯(lián)系,即z=a+bi(a,b∈R)?Z(a,b)?eq\o(OZ,\s\up7(→)).(2)由于復數(shù)、點、向量之間建立了一一對應的關(guān)系,因此可把復數(shù)、向量與解析幾何聯(lián)系在一起,解題時可運用數(shù)形結(jié)合的方法,使問題的解決更加直觀.2.與復數(shù)的幾何意義相關(guān)問題的一般步驟(1)進行簡單的復數(shù)運算,將復數(shù)化為標準的代數(shù)形式;(2)把復數(shù)問題轉(zhuǎn)化為復平面內(nèi)的點之間的關(guān)系,依據(jù)是復數(shù)a+bi(a,b∈R)與復平面上的點(a,b)一一對應.題型3復數(shù)的運算【例3-1】若,則A.0 B.1 C. D.2【例3-2】若,則A. B. C. D.【例3-3】A. B.4 C. D.【跟蹤訓練3-1】A.1 B. C. D.【跟蹤訓練3-2】A. B. C. D.【跟蹤訓練3-3】已知復數(shù),則A.2 B.5 C.10 D.18【跟蹤訓練3-4】已知,則A. B. C. D.【名師指導】復數(shù)代數(shù)形式運算問題的解題策略復數(shù)的加減法在進行復數(shù)的加減法運算時,可類比合并同類項,運用法則(實部與實部相加減,虛部
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度專利技術(shù)價格保密合同書
- 2025年度休閑漁業(yè)發(fā)展魚塘承包經(jīng)營合同
- 2025年度護膚品專業(yè)渠道代理商招募合同
- 2025年度業(yè)主起訴解除物業(yè)服務合同法律依據(jù)與實踐應用
- 2025年度商業(yè)街場地租賃合同解除書
- 2025年度大型活動安全預案人身免責及應急處理合同
- 2025年度山地滑雪場租賃管理服務協(xié)議
- 2025年廣東環(huán)境保護工程職業(yè)學院單招職業(yè)適應性測試題庫含答案
- 2025年度智能公寓簡易版租賃合同
- 2025年度教育培訓機構(gòu)中途入股投資及分紅合作協(xié)議
- 2024銷售人員年終工作總結(jié)2篇
- 2024年牛排行業(yè)分析報告及未來發(fā)展趨勢
- 智能微電網(wǎng)應用技術(shù)
- 車間維修現(xiàn)場安全操作規(guī)程范文
- 【全套】醫(yī)院智能化系統(tǒng)報價清單
- 全面質(zhì)量管理體系條款對照表
- 高職工商企業(yè)管理專業(yè)人才培養(yǎng)方案
- 北師大版五年級數(shù)學上冊典型例題系列之期中專項練習:分段計費問題(解析版)
- 行政法學基礎(chǔ)講義
- 中建專項施工升降機安裝專項施工方案
- 錄用通知書offer錄取通知書
評論
0/150
提交評論