2024屆吉林實驗中學中考數(shù)學五模試卷含解析_第1頁
2024屆吉林實驗中學中考數(shù)學五模試卷含解析_第2頁
2024屆吉林實驗中學中考數(shù)學五模試卷含解析_第3頁
2024屆吉林實驗中學中考數(shù)學五模試卷含解析_第4頁
2024屆吉林實驗中學中考數(shù)學五模試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆吉林實驗中學中考數(shù)學五模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某種計算器標價240元,若以8折優(yōu)惠銷售,仍可獲利20%,那么這種計算器的進價為()A.152元 B.156元 C.160元 D.190元2.已知一次函數(shù)y=kx+b的圖象如圖,那么正比例函數(shù)y=kx和反比例函數(shù)y=在同一坐標系中的圖象的形狀大致是()A. B.C. D.3.-5的倒數(shù)是A. B.5 C.- D.-54.如圖,經(jīng)過測量,C地在A地北偏東46°方向上,同時C地在B地北偏西63°方向上,則∠C的度數(shù)為()A.99° B.109° C.119° D.129°5.一元二次方程的根是()A. B.C. D.6.已知二次函數(shù)(為常數(shù)),當自變量的值滿足時,與其對應的函數(shù)值的最小值為4,則的值為()A.1或5 B.或3 C.或1 D.或57.據(jù)調(diào)查,某班20為女同學所穿鞋子的尺碼如表所示,尺碼(碼)3435363738人數(shù)251021則鞋子尺碼的眾數(shù)和中位數(shù)分別是()A.35碼,35碼 B.35碼,36碼 C.36碼,35碼 D.36碼,36碼8.如圖1,點P從△ABC的頂點A出發(fā),沿A﹣B﹣C勻速運動,到點C停止運動.點P運動時,線段AP的長度y與運動時間x的函數(shù)關系如圖2所示,其中D為曲線部分的最低點,則△ABC的面積是()A.10 B.12 C.20 D.249.如圖,△ABC內(nèi)接于⊙O,AD為⊙O的直徑,交BC于點E,若DE=2,OE=3,則tan∠ACB·tan∠ABC=()A.2 B.3 C.4 D.510.下列四個函數(shù)圖象中,當x<0時,函數(shù)值y隨自變量x的增大而減小的是()A. B. C. D.11.如圖,在四邊形ABCD中,∠A+∠D=α,∠ABC的平分線與∠BCD的平分線交于點P,則∠P=()A.90°-α B.90°+α C. D.360°-α12.下列美麗的壯錦圖案是中心對稱圖形的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.將半徑為5,圓心角為144°的扇形圍成一個圈錐的側(cè)面,則這個圓錐的底面半徑為.14.一次函數(shù)y=kx+b的圖像如圖所示,則當kx+b>0時,x的取值范圍為___________.15.如果不等式組的解集是x<2,那么m的取值范圍是_____16.如圖△ABC中,AB=AC=8,∠BAC=30°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°得到△ACD,延長AD、BC交于點E,則DE的長是_____.17.如圖,正五邊形ABCDE和正三角形AMN都是⊙O的內(nèi)接多邊形,則∠BOM=_______.18.分解因式___________三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,CE⊥AD,交AD的延長線于點E.(1)求證:∠BDC=∠A;(2)若CE=4,DE=2,求AD的長.20.(6分)某一天,水果經(jīng)營戶老張用1600元從水果批發(fā)市場批發(fā)獼猴桃和芒果共50千克,后再到水果市場去賣,已知獼猴桃和芒果當天的批發(fā)價和零售價如表所示:品名獼猴桃芒果批發(fā)價元千克2040零售價元千克2650他購進的獼猴桃和芒果各多少千克?如果獼猴桃和芒果全部賣完,他能賺多少錢?21.(6分)先化簡,再求值,,其中x=1.22.(8分)一次函數(shù)y=34x的圖象如圖所示,它與二次函數(shù)y=ax2(1)求點C的坐標;(2)設二次函數(shù)圖象的頂點為D.①若點D與點C關于x軸對稱,且△ACD的面積等于3,求此二次函數(shù)的關系式;②若CD=AC,且△ACD的面積等于10,求此二次函數(shù)的關系式.23.(8分)如圖,M是平行四邊形ABCD的對角線上的一點,射線AM與BC交于點F,與DC的延長線交于點H.(1)求證:AM2=MF.MH(2)若BC2=BD.DM,求證:∠AMB=∠ADC.24.(10分)小張騎自行車勻速從甲地到乙地,在途中因故停留了一段時間后,仍按原速騎行,小李騎摩托車比小張晚出發(fā)一段時間,以800米/分的速度勻速從乙地到甲地,兩人距離乙地的路程y(米)與小張出發(fā)后的時間x(分)之間的函數(shù)圖象如圖所示.求小張騎自行車的速度;求小張停留后再出發(fā)時y與x之間的函數(shù)表達式;求小張與小李相遇時x的值.25.(10分)如圖所示,在平面直角坐標系xOy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點A、B和D(4,-2(1)求拋物線的表達式.(2)如果點P由點A出發(fā)沿AB邊以2cm/s的速度向點B運動,同時點Q由點B出發(fā),沿BC邊以1cm/s的速度向點C運動,當其中一點到達終點時,另一點也隨之停止運動.設S=PQ2(cm2).①試求出S與運動時間t之間的函數(shù)關系式,并寫出t的取值范圍;②當S取54(3)在拋物線的對稱軸上求點M,使得M到D、A的距離之差最大,求出點M的坐標.26.(12分)如圖,在中,,點在上運動,點在上,始終保持與相等,的垂直平分線交于點,交于,判斷與的位置關系,并說明理由;若,,,求線段的長.27.(12分)先化簡,再計算:其中.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】【分析】設進價為x元,依題意得240×0.8-x=20x℅,解方程可得.【詳解】設進價為x元,依題意得240×0.8-x=20x℅解得x=160所以,進價為160元.故選C【點睛】本題考核知識點:列方程解應用題.解題關鍵點:找出相等關系.2、C【解析】試題分析:如圖所示,由一次函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限,可得k>1,b<1.因此可知正比例函數(shù)y=kx的圖象經(jīng)過第一、三象限,反比例函數(shù)y=的圖象經(jīng)過第二、四象限.綜上所述,符合條件的圖象是C選項.故選C.考點:1、反比例函數(shù)的圖象;2、一次函數(shù)的圖象;3、一次函數(shù)圖象與系數(shù)的關系3、C【解析】

若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).【詳解】解:5的倒數(shù)是.故選C.4、B【解析】

方向角是從正北或正南方向到目標方向所形成的小于90°的角,根據(jù)平行線的性質(zhì)求得∠ACF與∠BCF的度數(shù),∠ACF與∠BCF的和即為∠C的度數(shù).【詳解】解:由題意作圖如下∠DAC=46°,∠CBE=63°,由平行線的性質(zhì)可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故選B.【點睛】本題考查了方位角和平行線的性質(zhì),熟練掌握方位角的概念和平行線的性質(zhì)是解題的關鍵.5、D【解析】試題分析:此題考察一元二次方程的解法,觀察發(fā)現(xiàn)可以采用提公因式法來解答此題.原方程可化為:,因此或,所以.故選D.考點:一元二次方程的解法——因式分解法——提公因式法.6、D【解析】

由解析式可知該函數(shù)在時取得最小值0,拋物線開口向上,當時,y隨x的增大而增大;當時,y隨x的增大而減??;根據(jù)時,函數(shù)的最小值為4可分如下三種情況:①若,時,y取得最小值4;②若-1<h<3時,當x=h時,y取得最小值為0,不是4;③若,當x=3時,y取得最小值4,分別列出關于h的方程求解即可.【詳解】解:∵當x>h時,y隨x的增大而增大,當時,y隨x的增大而減小,并且拋物線開口向上,

∴①若,當時,y取得最小值4,

可得:4,

解得或(舍去);

②若-1<h<3時,當x=h時,y取得最小值為0,不是4,

∴此種情況不符合題意,舍去;

③若-1≤x≤3<h,當x=3時,y取得最小值4,

可得:,

解得:h=5或h=1(舍).

綜上所述,h的值為-3或5,

故選:D.【點睛】本題主要考查二次函數(shù)的性質(zhì)和最值,根據(jù)二次函數(shù)的性質(zhì)和最值分類討論是解題的關鍵.7、D【解析】

眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).【詳解】數(shù)據(jù)36出現(xiàn)了10次,次數(shù)最多,所以眾數(shù)為36,一共有20個數(shù)據(jù),位置處于中間的數(shù)是:36,36,所以中位數(shù)是(36+36)÷2=36.故選D.【點睛】考查中位數(shù)與眾數(shù),掌握眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù)是解題的關鍵.8、B【解析】過點A作AM⊥BC于點M,由題意可知當點P運動到點M時,AP最小,此時長為4,觀察圖象可知AB=AC=5,∴BM==3,∴BC=2BM=6,∴S△ABC==12,故選B.【點睛】本題考查了動點問題的函數(shù)圖象,根據(jù)已知和圖象能確定出AB、AC的長,以及點P運動到與BC垂直時最短是解題的關鍵.9、C【解析】

如圖(見解析),連接BD、CD,根據(jù)圓周角定理可得,再根據(jù)相似三角形的判定定理可得,然后由相似三角形的性質(zhì)可得,同理可得;又根據(jù)圓周角定理可得,再根據(jù)正切的定義可得,然后求兩個正切值之積即可得出答案.【詳解】如圖,連接BD、CD在和中,同理可得:,即為⊙O的直徑故選:C.【點睛】本題考查了圓周角定理、相似三角形的判定定理與性質(zhì)、正切函數(shù)值等知識點,通過作輔助線,結合圓周角定理得出相似三角形是解題關鍵.10、D【解析】

A、根據(jù)函數(shù)的圖象可知y隨x的增大而增大,故本選項錯誤;B、根據(jù)函數(shù)的圖象可知在第二象限內(nèi)y隨x的增大而減增大,故本選項錯誤;C、根據(jù)函數(shù)的圖象可知,當x<0時,在對稱軸的右側(cè)y隨x的增大而減小,在對稱軸的左側(cè)y隨x的增大而增大,故本選項錯誤;D、根據(jù)函數(shù)的圖象可知,當x<0時,y隨x的增大而減??;故本選項正確.故選D.【點睛】本題考查了函數(shù)的圖象,函數(shù)的增減性,熟練掌握各函數(shù)的性質(zhì)是解題的關鍵.11、C【解析】試題分析:∵四邊形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分別為∠ABC、∠BCD的平分線,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,則∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故選C.考點:1.多邊形內(nèi)角與外角2.三角形內(nèi)角和定理.12、A【解析】【分析】根據(jù)中心對稱圖形的定義逐項進行判斷即可得.【詳解】A、是中心對稱圖形,故此選項正確;B、不是中心對稱圖形,故此選項錯誤;C、不是中心對稱圖形,故此選項錯誤;D、不是中心對稱圖形,故此選項錯誤,故選A.【點睛】本題主要考查了中心對稱圖形,熟練掌握中心對稱圖形的定義是解題的關鍵;把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】考點:圓錐的計算.分析:求得扇形的弧長,除以1π即為圓錐的底面半徑.解:扇形的弧長為:=4π;這個圓錐的底面半徑為:4π÷1π=1.點評:考查了扇形的弧長公式;圓的周長公式;用到的知識點為:圓錐的弧長等于底面周長.14、x>1【解析】分析:題目要求kx+b>0,即一次函數(shù)的圖像在x軸上方時,觀察圖象即可得x的取值范圍.詳解:∵kx+b>0,∴一次函數(shù)的圖像在x軸上方時,∴x的取值范圍為:x>1.故答案為x>1.點睛:本題考查了一次函數(shù)與一元一次不等式的關系,主要考查學生的觀察視圖能力.15、m≥1.【解析】分析:先解第一個不等式,再根據(jù)不等式組的解集是x<1,從而得出關于m的不等式,解不等式即可.詳解:解第一個不等式得,x<1,∵不等式組的解集是x<1,∴m≥1,故答案為m≥1.點睛:本題是已知不等式組的解集,求不等式中字母取值范圍的問題.可以先將字母當作已知數(shù)處理,求出解集與已知解集比較,進而求得字母的范圍.求不等式的公共解,要遵循以下原則:同大取較大,同小取較小,大小小大中間找,大大小小解不了.16、【解析】

過點作于,根據(jù)三角形的性質(zhì)及三角形內(nèi)角和定理可計算再由旋轉(zhuǎn)可得,,根據(jù)三角形外角和性質(zhì)計算,根據(jù)含角的直角三角形的三邊關系得和的長度,進而得到的長度,然后利用得到與的長度,于是可得.【詳解】如圖,過點作于,∵,∴.∵將繞點逆時針旋轉(zhuǎn),使點落在點處,此時點落在點處,∴∵∴在中,∵∴∴,在中,∵,∴,∴.故答案為.【點睛】本題考查三角形性質(zhì)的綜合應用,要熟練掌握等腰三角形的性質(zhì),含角的直角三角形的三邊關系,旋轉(zhuǎn)圖形的性質(zhì).17、48°【解析】

連接OA,分別求出正五邊形ABCDE和正三角形AMN的中心角,結合圖形計算即可.【詳解】連接OA,∵五邊形ABCDE是正五邊形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM-∠AOB=48°,故答案為48°.點睛:本題考查的是正多邊形與圓的有關計算,掌握正多邊形的中心角的計算公式是解題的關鍵.18、【解析】

原式提取公因式,再利用完全平方公式分解即可.【詳解】原式=2x(y2+2y+1)=2x(y+1)2,故答案為2x(y+1)2【點睛】此題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明過程見解析;(2)1.【解析】試題分析:(1)連接OD,由CD是⊙O切線,得到∠ODC=90°,根據(jù)AB為⊙O的直徑,得到∠ADB=90°,等量代換得到∠BDC=∠ADO,根據(jù)等腰直角三角形的性質(zhì)得到∠ADO=∠A,即可得到結論;(2)根據(jù)垂直的定義得到∠E=∠ADB=90°,根據(jù)平行線的性質(zhì)得到∠DCE=∠BDC,根據(jù)相似三角形的性質(zhì)得到,解方程即可得到結論.試題解析:(1)連接OD,∵CD是⊙O切線,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB為⊙O的直徑,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,∴,∴EC2=DE?AE,∴11=2(2+AD),∴AD=1.考點:(1)切線的性質(zhì);(2)相似三角形的判定與性質(zhì).20、(1)購進獼猴桃20千克,購進芒果30千克;(2)能賺420元錢.【解析】

設購進獼猴桃x千克,購進芒果y千克,由總價單價數(shù)量結合老張用1600元從水果批發(fā)市場批發(fā)獼猴桃和芒果共50千克,即可得出關于x,y的二元一次方程組,解之即可得出結論;根據(jù)利潤銷售收入成本,即可求出結論.【詳解】設購進獼猴桃x千克,購進芒果y千克,根據(jù)題意得:,解得:.答:購進獼猴桃20千克,購進芒果30千克.元.答:如果獼猴桃和芒果全部賣完,他能賺420元錢.【點睛】本題考查了二元一次方程組的應用,解題的關鍵是:找準等量關系,正確列出二元一次方程組;根據(jù)數(shù)量關系,列式計算.21、1.【解析】

先根據(jù)分式的運算法則進行化簡,再代入求值.【詳解】解:原式=()×=×=;將x=1代入原式==1.【點睛】分式的化簡求值22、(1)點C(1,32);(1)①y=38x1-32x;②y=-12x【解析】試題分析:(1)求得二次函數(shù)y=ax1-4ax+c對稱軸為直線x=1,把x=1代入y=34x求得y=32,即可得點C的坐標;(1)①根據(jù)點D與點C關于x軸對稱即可得點D的坐標,并且求得CD的長,設A(m,34m),根據(jù)S△ACD=3即可求得m的值,即求得點A的坐標,把A.D的坐標代入y=ax1-4ax+c得方程組,解得a、c的值即可得二次函數(shù)的表達式.②設A(m,34m)(m<1),過點A作AE⊥CD于E,則AE=1-m,CE=根據(jù)勾股定理用m表示出AC的長,根據(jù)△ACD的面積等于10可求得m的值,即可得A點的坐標,分兩種情況:第一種情況,若a>0,則點D在點C下方,求點D的坐標;第二種情況,若a<0,則點D在點C上方,求點D的坐標,分別把A、D的坐標代入y=ax1-4ax+c即可求得函數(shù)表達式.試題解析:(1)y=ax1-4ax+c=a(x-1)1-4a+c.∴二次函數(shù)圖像的對稱軸為直線x=1.當x=1時,y=34x=32,∴C(1,(1)①∵點D與點C關于x軸對稱,∴D(1,-32設A(m,34m)(m<1),由S△ACD=3,得1由A(0,0)、D(1,-32)得解得a=38∴y=38x1-3②設A(m,34m)(m<1),過點A作AE⊥CD于E,則AE=1-m,CE=32-AC==54(1-m),∵CD=AC,∴CD=54由S△ACD=10得12×54(1-m)∴A(-1,-32若a>0,則點D在點C下方,∴D(1,-72由A(-1,-32)、D(1,-72)得解得∴y=18x1-1若a<0,則點D在點C上方,∴D(1,132由A(-1,-32)、D(1,132)得解得∴y=-12x1+1x+9考點:二次函數(shù)與一次函數(shù)的綜合題.23、(1)證明見解析;(2)證明見解析.【解析】

(1)由于AD∥BC,AB∥CD,通過三角形相似,找到分別于,都相等的比,把比例式變形為等積式,問題得證.(2)推出∽,再結合,可證得答案.【詳解】(1)證明:∵四邊形是平行四邊形,∴,,∴,,∴即.(2)∵四邊形是平行四邊形,∴,又∵,∴即,又∵,∴∽,∴,∵,∴,∵,∴.【點睛】本題考查的知識點是相似三角形的判定與性質(zhì),解題的關鍵是熟練的掌握相似三角形的判定與性質(zhì).24、(1)300米/分;(2)y=﹣300x+3000;(3)分.【解析】

(1)由圖象看出所需時間.再根據(jù)路程÷時間=速度算出小張騎自行車的速度.

(2)根據(jù)由小張的速度可知:B(10,0),設出一次函數(shù)解析式,用待定系數(shù)法求解即可.(3)求出CD的解析式,列出方程,求解即可.【詳解】解:(1)由題意得:(米/分),答:小張騎自行車的速度是300米/分;(2)由小張的速度可知:B(10,0),設直線AB的解析式為:y=kx+b,把A(6,1200)和B(10,0)代入得:解得:∴小張停留后再出發(fā)時y與x之間的函數(shù)表達式;(3)小李騎摩托車所用的時間:∵C(6,0),D(9,2400),同理得:CD的解析式為:y=800x﹣4800,則答:小張與小李相遇時x的值是分.【點睛】考查一次函數(shù)的應用,考查學生觀察圖象的能力,熟練掌握待定系數(shù)法求一次函數(shù)解析式是解題的關鍵.25、(1)拋物線的解析式為:y=1(2)①S與運動時間t之間的函數(shù)關系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②存在.R點的坐標是(3,﹣32(3)M的坐標為(1,﹣83【解析】試題分析:(1)設拋物線的解析式是y=ax2+bx+c,求出A、B、D的坐標代入即可;(2)①由勾股定理即可求出;②假設存在點R,可構成以P、B、R、Q為頂點的平行四邊形,求出P、Q的坐標,再分為兩種種情況:A、B、C即可根據(jù)平行四邊形的性質(zhì)求出R的坐標;(3)A關于拋物線的對稱軸的對稱點為B,過B、D的直線與拋物線的對稱軸的交點為所求M,求出直線BD的解析式,把拋物線的對稱軸x=1代入即可求出M的坐標.試題解析:(1)設拋物線的解析式是y=ax2+bx+c,∵正方形的邊長2,∴B的坐標(2,﹣2)A點的坐標是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣23)代入得:c=-2解得a=16,b=﹣1∴拋物線的解析式為:y=1答:拋物線的解析式為:y=1(2)①由圖象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論