版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
原文:(ItcomesfromCarltonR.Davis.IPSEC:SecuringVPNS.北京:清華大學出版社,2002)CryptanalysisandImprovementofDigitalMultisignatureSchemeBasedonRSASULi(粟栗)CUIGuohua(崔國華)CHENJing(陳晶)YUANJun(袁雋)SchoolofComputerScienceandTechnology,HuazhongUniversityofScienceandTechnology,Wuhan430074,ChinaAbstractZhangeta.lproposedasequentialmultisignatureschemebasedonRSA.Theschemehasadvantagesoflowcomputationandcommunicationcosts,andsoon.However,wefindaproblemintheirschemethattheverifiercannotdistinguishwhetherthemulti-signatureissignedbyallthesignersofthegrouporonlybythelastsigner.Thus,anysinglesignaturecreatedbythelastsignercanbeusedasamultisignaturecreatedbythewholegroupmembers.Thispaperproposesanimprovedschemethatcanovercomethedefect.Inthenewscheme,theidentitymessagesofallthesignersareaddedinthemultisignatureandusedinverificationphase,sothattheverifiercanknowthesignatureisgeneratedbywhichsigners.Performanceanalysisshowsthattheproposedschemecostslesscomputationthantheoriginalschemeinbothsignatureandverificationphases.Furthermore,eachpartialsignatureisbasedonthesigner’sidentitycertificate,whichmakestheschememoresecure.Keywords:Digitalmultisignature;Sequentialmultisignature;RSAcryptosystem;CryptanalysisIntroductionMultisignatureisajointsignaturegeneratedbyagroupofsigners.Thegrouphasasecuritypolicythatrequiresamultisignaturetobesignedbyallgroupmemberswiththeknowledgeofmultipleprivatekeys.Digitalmultisignaturesshouldhaveseveralbasicproperties[1]:(1)Multisignaturesaregeneratedbymultiplegroupmemberswiththeknowledgeofmultipleprivatekeys.(2)Multisignaturescanbeverifiedeasilybyusingthegrouppublickeywithoutknowingeachsignerspublickey.(3)Itiscomputationallyinfeasibletogeneratethegroupsignaturewithoutthecooperationofallgroupmembers.In2003,Zhangeta.l[2]proposedasequentialmultisignatureschemebasedonRSA,inwhichallthesignersuseacommonmodulus.Theschemehastheadvantagesoflowcomputationandcommunicationcosts,andcanresistforgeryandcoalitionattacks.Thedifficultyofbreakingthesystemisequivalenttothatoffactoringalargeintegerintoitstwolargeprimefactors.However,ourcryptanalysisofZhangeta.l’sschemefindsaseriousproblem;thatisaultisignatureisverifiedbyusingthelastsigner’spublickeyinsteadofthegrouppublickey.Asaresulttheverifiercannotdistinguishwhetherasignatureissignedbyagroupofsignersoronlybythelastsigner,whichviolatesthebasicpropertiesofsequentialmultisignature[1,3,4].Therefore,weproposeanimprovementschemetoovercomethisdefectinthispaper,sothattheverifierknowswhohavecreatedthemultisignature.Performanceandsecurityanalysesshowthatthenewschemenotonlykeepstheadvantagesoforiginalcheme,butalsosatisfiesthedefinitionofmltisignatureandismoresecure.1ReviewofZhangeta.lsSequentialMultisignatureScheme1.1SysteminitializationFirsttheTrustCenter(TC)selectstwolargeprimpandq,andcomputestheRSAmodulusn=pq.Then,TCselectsarandomnumberasthepublickeywhichmakesgcd(e,)=1,wheregcd(·)isthegreatestcommondivisorfunction,=(p-1)(q-1),and1<e<.Finally,TCcomputestheprivatekeydwhichmakesed≡1mod((n)).Inthemeanwhile,TCpublishesthepublickey(n,e)andkeeps(d,p,q)secretly.Define(i=1,2,…,k)tobethesignerwhohasaexclusivecertificate(i=1,2,…,k),whereispublic,andMthemessagetobesigned.TCcomputesandforeverysigner,andsendsthecertificatetoeachsignerthroughasafechannelwhereH(·)issecurehashfunction,whichgeneratesafixedlengthidentityinformationfromthecertificate,andistheprivatekeyofthesigner.Then,thecorrespondingsignerverifiesthevalidityofthecertificatethroughtheformula,andkeepsasasecretkeyiftheformulaholds.1.2GeneratingpartialsignatureofsequentialmultisignatureAsapreparationforgenerationofpartialsignatures,TCpublishestheorderofsignersthroughtheiridentity().Step1ThesignerU1selectsarandomnumberandcomputes,,,,WhereisthecommitmentofU1;m1bindsthecommitmentandplaintextbyhashfunction;(D1,f1)isthesignatureof.ThenthesignerU1sendsthepartialsignaturetothesigner.Step2Byanalogy,ifthe(i-1)thpartialsignatureisright,(2≤i<k)createstheithsignature.Heselectsarandomnumberandcomputes,,,.Thensendsthepartialsignaturetothesigner.computes=H(),,.verifiesthevalidityoftheithpartialsignaturebycomparingthevalueofwith.Thepartialsignatureisrightifequalsmi;otherwiseitiswrong.Step3createsthenextpartialsignature.Theaboveprocessisrepeateduntillthesignercreatesthesignatureandsendsittomultisignaturereceiver.Thereceivercomputes,,.verifiesthethesignaturevaliditybycomparingwith.Thefinalmultisignatureis.2CryptanalysisofZhangeta.l’sSequentialMultisignatureSchemeWhenthereceiverusesthesignature,heshouldconvincethethirdpartythatitwascorrectlysignedbytheksigners.Thethirdpartycomputesand,andverifiesthevalidityofthemultisignaturebyjudgingwhetherequation〕holdsornot.Thesignatureisverifiedbyusingonlythe’spublickeyinsteadofthepublickeyofksigners.Hence,thethirdpartycannotdistinguishwhetherthesignatureissignedbyksignersoronlybythekthsigner.Ifthesignerwantstoconvincethethirdparty,hemustuseallsigners’publickeytoverifythemultisignature.Althoughcanbecalculatedinpublictoshowthatthemultisignatureissignedbytheksigners,buttheverifierhastoknowallthekpartialsignatures,whichviolatesthedefinitionofsequentialmultisignature.Thecomputationamountofverificationincreaseslinearlywiththenumberofsigners.Therefore,weproposeanimprovedschemehereinaftertosolvethisproblembasedontheschemesinRefs.[2,5,6,7].3ImprovedSequentialMultisignatureSchemeBasedonRSA3.1InitializationphaseSignerselectsarandomnumber,computes,andsendstothe.Similarly,everysignerselectsarandomnumber,computesandsendstosigner.Atlast,computes,andsendstoreceiver.Then,computesm=H(M,)andpublishesm.3.2GeneratingpartialsignatureofsequentialmultisignatureStep1Signerusestherandomnumberandcomputes.Becausehassenttothesignerininitializationphase,heonlysendstonow.computesand,andverifies(,)bycomparingwithT1.Thepartialsignatureofisrightifequals.Otherwise,itiswrong,andrequirestoresignuntilthepartialsignaturesatisfiestheverificationequation.Step2Assumingthatthe(i-1)thsignatureisright(1<i<k),createstheithsignatureas.Thensendsthepartialsignaturetothesigner.computes,,and.verifiesthevalidityofbycomparingwith.Step3Signercreatesthenextpartialsignature.Theaboveprocessisrepeateduntilsignercreatesthelastpartialsignatureandsendsittothemultisignaturereceiver.computes,,and.verifiesthevalidityof(,)bycomparingwith.Thefinalmultisignaturesignedbyksignersis(,,m).3.3TestifyingvalidityAnyonecanverifythevalidityofthemultisignaturebycomputingandcomparingwith.Ifequals,themultisignaturesignedbytheksignersisright.ProofFromthesequentialsignatureprocess,itisknownthatWhenthereceiverorthethirdpartyverifiesthemultisignature,hecomputesBecause,wehave。ThenThemultisignatureisrightifandonlyifequals.4SecurityAnalysisZhangeta.l[2]analyzedthesecurityoftheiroriginalschemeindetailHere,weonlyanalyzethesecurityrelatedtothemodifiedpart.(1)Theverifierknowsthesignerofthemultisignature.Intheimprovedscheme,thecertificateofeachsignerhasbeenpublished,andtheverifiermustuse,,…,tocomputeforverification,sohecandistinguishwhetherthesignatureissignedbyksignersoronlybythekthsigner.(2)Thepublicationofininitializationphaseissecure.InZhangeta.l’soriginalscheme,istranslatedsequentiallybetweensigners.Here,iscomputedininitializationphase.Evenanattackerknowsandcancomputethevalueof,buthecannotgetfrom.(3)Themultisignaturecanresistforgeryattack.Iftheattackerwantstoforgethepartialsignatureof,hemustforgeavalidsatisfyingtheverificationformula.However,ispublishedininitializationphaseandcannotbeforged,sohemustmakeathatsatisfiestheformula.Thatisadifficultproblembasedonfactorizationofabiginteger.(4)Allsignersmustfollowthespecifiedorder.AnextsignerUi(i=2,…,k)verifiesthepartialsignaturethroughthevalueof,whichisgeneratedininitializationphase.AnysignaturedisorderofindividualsignerswillresultsintheprocessinterruptionofCreatingmultisignature.Forexample,ifthesignercreatedthepartialsignatureTibeforehereceivesthesignature,then≠willoccurtothesubsequentverificationphaseandtheprocessofcreatingthemultisignaturestops.5PerformanceAnalysisDefinesymbols,andasthetimecostsofmodularmultiplication,modularexponentiationandhashoperation,respectively.Inourscheme,theaveragecomputationtimeforverifyingthepreviouspartialsignatureis,butthecomputationoftillandtheirproductwhichcosts,canbedonebypre-calculation;thecomputationtimeforpartialsignatureis.ThecomputationcostsforbothsignatureandverificationarelessthanthoseinZhangeta.l’sscheme;thereforeourschemeismoreefficient.6ConclusionWepointedoutadefectofZhangeta.l’ssequentialmultisignatureschemebasedonRSA;thatis,averifiercannotdistinguishwhetherthesignatureissignedbyagroupofsignersoronlybythelastsignerofthegroup.Toovercomethedefectweproposedanimprovedscheme,inwhichtheverifiercanknowthesignatureisgeneratedbywhichsigners.Theproposedschemedoesnotincreasetheamountofcomputationandcommunication;itssecurityisbasedonthedifficultyoffactoringalargeinteger.Performanceanalysisandsecurityanalysisshowthattheproposedschemeismoresecureandefficientthantheoriginalscheme.ECCellipticcurvenumeralencryptionECCisbasedonthegaloisfieldin,ellipticcurvesetofpointsEconstatutesonthegroupdefinesseparatelogarithmsystemIngaloisfieldellipticcurvechoice,Shouldavoidusingtheultrastrangecurve,guaranteestheenoughsecurityTheellipticcurveoperationforassignsonellipticcurveEbasicpointGandTheinteger(11)nkappakappa,asksthenumbertoride,QalsoisonE,computation..(kappaGAddstogether)isrelativelyeasy;ButifassignsintheellipticcurvetwoGandQ,asksanintegerkappa,causes(mod)GQpkappa=,speciallywhenGiscomparesWhenGaoJiebasicpoint,thenisextremelydifficultThisistheellipticcurveseparatelogarithmquestion.Basedontheellipticcurveseparatelogarithmquestiondifficultsolution,tohaveformedtheECCsystem.1.ellipticcurvespasswordTheellipticcurvecryptographicsystemhasthemanykindsofforms,typicallikeEpigamicsystemDiffie-Hellmankeyswapagreement:SupposesEisanelementnumberfield()ontheellipticcurve,Gisinthecurvethepublicspot,itsstepisn.Asecretdesignationstochasticinteger,thecomputationselects,thetransmissionforB;Similarly,Bsecretdesignationstochasticinteger,thecomputationselects,thetransmissionforA.Themalekeyis,AwhilebythecomputationwhichreceivesfromBobtainsQwithownprivatekey;BwithownprivatekeyBdwhilebytheAdGcomputationwhichreceivesfromAobtainsQ.Theinterceptionmustresultindetermines,onlyknowsG,,with,butisunabletopromoteorTheEIGamalsystem:SupposedtheinformationsequencealreadytoinsertthroughthecodetotheellipticcurveEpsilonon,andA,BbothsidesalreadypassedTheDiffie-HellmanagreementhasmutuallyexchangedAdGandBdG.AmusttoBtransmissioninformationmEpsilon∈,AtransmissionforBseveralpairs:withitsprivatekeywhilebythefirstitem,usestheseconditemtosubtractitagain,solvesinformationm.2.severalkindstypicalbasedonECCdigitalsignatureplanBasedonthemalekeypassworddigitalsignaturesystembasicprincipleis:Whentheusersignswiththeprivatekey,signswithuseritselfrelatesintogether,alsoHasthelegalefficiency,thereceivingendconfirmswiththemalekeysigns.Generally,regardingthesamescaleparameter,theellipticcurvepasswordeachkeyintensitymustbebiggermuch,,173ellipticcurvepassworddepartmentTheseriesisequalto1,024EIGmalortheDSAsystemThereallegationspeedcomparedtoDSA,RSAandsoonothermalekeysystems,theefficiencyismorequicklyhigh.2.1basedonECCEIGamalsignatureplanThisplanistransplantsfromthetraditionalEIGamalsignaturesystemtotheellipticcurveinproduces1)initialization:Thestructureelementnumberfieldonthenon-ultrastrangeellipticcurveEpsilon,choosespublicbasicpoint,itsstepisn;InformationsequenceminsertsthroughthecodetoEpsilonon,namely2)keyproduction:TheuserAstochasticselection,willpublicizeselectstotakethemalekey3)signature:TheAstochasticchoice,thecomputation,calculates1again,thenlosesLeavessigns.4)confirms:AfterBreceivesthesignatureinformation,confirmsand,ifconfirmsforreallysigns;Otherwiseisthevacation.2.2ECDSAsignatureplanSupposestheelementnumberfieldonthenon-ultrastrangeellipticcurveEpsilon,choosespublicbasicpoint,itsstepisn;PassesinformationsequencemThecodeinsertstoEpsilonon,namely.SupposesAwithownprivatekeyAdtotheinformationmsignature,BusesAmalekeytotheabovebambooslipThenamecarriesontheconfirmation2.2.1signsAtohaveastochasticinteger,causes,,isanunidirectionalHashfunctionThen,AwillsigntheinformationandinformationmtransmissionforB.2.2.2confirmsBtoreceive,,,calculates.,and,if,pass,because2.3AbovebasedonECCsignatureplanalgorithmicanalysisIntheEIGamalplanonly(nisellipticcurveEpsilonstep)operatesthetraditionalmoldpoperationsubstitutionformoldnTheECDSAplancharacteristiciscalculatesinformationmthroughtheHashfunctionmixedtocollectthevalue,makesthenonlineartransformationtotheinformation,furtherenhancedthebambooslipFamoussecurityBut,directlyregardingthistheHashvaluecarriesonthesignature,becausetheHashvalue(MD5is128,SHAis160binarysequences)itValueverybig,makesthesignatureoperationtobemoretime-consumingInaddition,initsalgorithminformationdefiniteordersmbutdirectlyhasnottransmittedaftertheencryption,theinformationmsecuritycannotObtainsthesafeguardInviewofthis,thisarticleproposedonekindofproperattentiontobothsecurityandtheoperationefficiencyonekindhastheinformationretrievalthedigitalsignatureplan.3.OnekindbasedonECCsignatureimprovementprogramThisarticleproposedweightmakesthesignaturebynewsHashthevalueHamming,alsopassesthroughafterinformationmtheencryptionwithtosigntransmitstogether,causesthereceiveTheinformationhasmayrestore.3.1ParameterchoiceDesignatedHashfunctionMD5,easyhighspeedtorealizeMD5theinputnewslengthwith32bitsoftwarefree,theoutputcompressionvalueis128bit.IfdirectlyregardingthistheHashvaluecarriesonthesignature,becauseHashis128binarysequences,itsvalueverybig,calculatesthesignaturewithit,therunningtimeisverylongBecauseHashfunctionHammingweighttonewschangeverysensitive,ifthenewschange,theHammingweightchangestheprobabilityisabove90%,thisarticleconclusioncarriesonthemassiveexperimentalconfirmationregardingthiswithMATLAB,theresultisconsistentThereforethisarticleproposedweightmakesthesignaturebyHashthevalueHamming,doesnotsurpass128,regarding128binarysequencesitsvaluetobepossibletocausetheoperationgreatlyforthesimplification.Establishesaellipticcurveterritoryparameter,among,pexpressedagaloisfield,theelement,,thenon-ultrastrangeellipticcurveEpsilononspotsatisfiesequation,andEpsilononthebasicpointintegerfor#,iscalledellipticcurveEpsilonstepGexpressionellipticcurveEpsilononabasicpoint,nisselectsGthestepalsoforisbiggerthan1,602bigprimenumbers,itslengthhaddecidedtheECCkeylengthhisthesmallintegeriscalled-oddfactoralso.RelatedellipticcurvespotCanada,thesubtractionandthenumberwhileandsoontheoperationalrule,thestepcomputation,descriptionandsoonbasicpointselectionseealsotheliteratureispublic.Insertsinformationsequencemthroughthecodetotheelementnumberfield,namely.3.3ThisarticleplanalgorithmicanalysisFirstusedsecurehigherHashforinformationmfunctionMD5toentertherow,namelymadethenonlineartransformationaftermtodosignsAsaresultofHashThefunctionhasunidirectional,non-collisioncharacteristic,thereforecannotfindtwoseveral12,mm,causes,theaggressornottobeimpossibletocarryonthegenerationTradestheattack,hasthesamesecurityrankwithECDSA;TodispersesarowvaluetheHammingweighttocarryonsignsbutnon-todispersestherowvaluedirectsignature,comparesEnhancedtheoperationefficiencyAndalsopassesthroughafterinformationmtheencryptionwithtosigntransmitstogether,enablethereceivetheinformationtohavemayrestore.4.PerformanceanalysissignswhichbasedonECCBasedontheellipticcurvepassworddigitalsignature(ECDSA),itbreaksacodethedifficultytobeequaltotheellipticcurveseparatelogarithmquestiondifficultsolution,uptonowUptohadnotfoundtheeffectivemethodofattack,therelatedECDSAsecureanalysis,theliteraturehasamoredetailedanalysisThisarticlealgorithmintheECDSAfoundation,furtherenhancesthesecurityWhensignature,considerstheinformationdefiniteorderstheprotection,inordertoisextensivetothedefiniteordersDuplicate;HasnotusedittotheinformationdefiniteordersdirectsignaturetodispersearowvaluetheChinesebrightweighttomakethesignatureoperation.ThisarticleplanhasemphaticallyconsideredtheoperationefficiencyenhancementThealgorithminhadsomeplansinthefoundationtomakethefurtheroptimization,toHashletterThenumberHammingweightmakesthesignature,andtakesthemoldoperationbesidestheellipticcurveinnumberwhiletheoperation,otherarethealgebraicoperation,operationcomplexcomparesLow,greatlyenhancedtheoperatingspeed.Underspecificallyanalyzeseachperformance:(1)ThesignaturemayconfirmWhenBwithAmalekeyAQconfirmationnews,BmayconfirmistheAsignature;(2)BambooslipThenamecannotfabricateOnlysomeAknewitsprivatekeyAd,theothersareunabletoanalyzeobtainEvenifinellipticcurvebasicpointGandAA()QdG=ispublicButpromotesAdistheellipticcurveseparatelogarithmquestion,atpresentthesituationisunsolvable;(3)ThesignaturedidnotacknowledgeBorotherpeopleonlymustuseAMalekeyAQcanconfirmAthesignature,onceisconfirmed,Aafterwardsdidnotacknowledge;(4)SignscannotduplicateusesBecauseusedhasunidirectionaldispersedarrangesinorderHashThefunctionenterstherowtotheinformationoriginaltext,formsthehash,againsignsinthisabstractfoundationtoitsChinesebrightweightProducesoriginallyusingtheHashfunctionBeginninginformationhashtoprimaryinformationslightchangeextremelysensitive,theChinesebrightweightveryisalsosensitivetotheprimaryinformationchangeThesignatureistheinformationoriginaltextThefunction,differentinformationoriginaltextitdispersesarowvaluetobedifferent,signsalsodifferently;(5)TheinformationwhichsignsismayrestoreAmakesinformationmwithBQTheencryptionkey,carriedontheECCencryptiontotheinformationdefiniteorders,BhasmadetheinformationdecipherkeywithBdveryeasilytorestoretoit.Thisarticleplanmaygoastepfurtherthepracticalapplication,liketoinformationtheandsoonpictureortextdigitalsignatureistheworkwhichnextstepmustdoHowinvolvestoFirmlyinsertstheinformationoriginaltextintheellipticcurve,aswellasquestionandsoonrelatedellipticcurvefastalgorithmseparatearticlediscussion.5.AnellipticcurvedigitalsignatureschemeEllipticCurveCryptosystemisapublic-keycryptosystem,inadditiontodataencryption,itisanotherapplicationfordigitalsignatures.Withdistributedcomputertechnologytoenhanceandextensiveapplicationofcomputingpowerincreasedgreatly.Toachievegreatersecurity,RSAneedsofthekeybitlonger,tieuphugeresources,Thisaffectedmoreencryptionandsignaturespeed,inappropriateforsmartcardsandotherresourceslimitedhardwaredesign,EllipticCurveandhasthesamesecurityadvantagesofthesmalloverhead,EllipticCurveDigitalSignatureresearchandproductdesigngraduallybecomethehotspot.EllipticCurveDigitalSignatureandElGamaldigitalsignatureisverysimilar,onlyellipticcurvedigitalsignatureisbasedontheellipticcurvediscretelogarithmproblem(Eclipse),ElGamaldigitalsignatureandisbasedongenerallylimiteddomainofdiscretelogarithmproblem(DLP).Therefore,wecanusethissimilarity,rightabovethesixdifferenttypesofsignaturesequationappropriatetransform,thusbemoreconvenientEllipticCurvesignatureequation.Ourlastarticleisa(5)SignedanequationderivedEllipticCurveDigitalSignatureprogram.InEquationWeusedtoreplacem,thentheequationinto,Withbothsidesmultipliedbym,;Becausemisknownthenews,Itcanbehash,Signedwaslaunchedandtheacceptancesideknow,Wecanmake,canusesubstituteAsnewsmsignatures,Thus,theaboveequationcanbesignedintoasfollows:Signedinordertousethisequationtoconstructasignatureprogram,thestepsareasfollows:Selectingasecurityellipticcurve,ellipsecurveparametersandParaapartofthesame.(1)SignedAliceonEchoiceprivateKeyx,gforEBp,calculation,yasapublickeyissued,Aliceexplicitcalculationofm;(2)Alicechoiceintegerrandomk(ksecrets),(s,r,e)willbesenttotheverifierBob;Theseareoursignaturesderivedprogram,whichavoidstheinverseprocess,solvetheECDSAalgorithminadequate.TheprogramthanECDSAsimplealgorithm,theexperimentalresultsshowthatthealgorithmthanElGamal,Schnorrprogramabout28%faster.譯文1:密碼分析和基于RSA多重數(shù)字簽名方案的改良(粟栗,崔國華,陳晶,袁雋)中國華中科技大學,計算機科學與技術學院,武漢430074摘要張等人提出了基于RSA序貫多重簽名方案.該方案具有低運算、低通信費用優(yōu)點等等。然而,我們發(fā)現(xiàn)一個問題,在他們的方案中核查不能區(qū)分多重簽名簽署是由簽名組中所有的簽名者所簽署還是由最后一位簽名者簽署.因此,由最后一位簽名者所做的單一簽署可以作為整組簽署成員所做的多重簽署。本文提出一個改良方案,可以克服這個缺陷。在新的方案中,所有簽名者的身份信息被添加在這個多重簽署中,并且會在核查階段顯示,以確保核查時能知道簽署是由哪些簽名者產(chǎn)生的。性能分析說明,這個新的方案在簽署和核查階段需要的計算都比原來的方案少。此外,每一局部的簽名是基于簽名者的身份證書,這使得該方案更平安。引言多重簽名是由一組簽名者所產(chǎn)生的聯(lián)合簽名。該集團的平安政策,需要多重要簽署的所有組成員的知識的多重私人鑰匙。數(shù)字多重簽署應該有幾個根本屬性:〔1〕多重簽署是由多組成員用多個私鑰的知識產(chǎn)生的;〔2〕多重簽署在不知道每個簽署者的公鑰的情況下可以很容易的通過該組的公鑰進行核查?!?〕在沒有所有組成員的合作下,計算產(chǎn)生該組簽署的可行性。2003年,張等人提出了一種基于RSA的序列多重簽名方案。其中所有的簽名使用一個共同的模量。該方案的優(yōu)點是低的計算和通信費用,并能抵抗偽造和聯(lián)軍攻擊。攻破這個系統(tǒng)的困難性相當于將一個大整數(shù)分解為兩個大素數(shù)因子。然而,我們對張等人加密方案進行分析,發(fā)現(xiàn)一個嚴重的問題。這個問題就是:一個多重簽署可以由最后的簽名者的公鑰來進行核查,而不是多重簽署組的公鑰。結果使核查者不能區(qū)分簽署是由一組簽署者簽署還是僅由最后一個簽署者簽署,這就違背了連續(xù)多重簽署的根本屬性【1,3】。因此,在這章中,我們提出一種改良的方案來克服這個缺陷,以使核查者能夠確認簽名是由誰產(chǎn)生的。性能和平安性分析說明,新的方案不僅保存了原來方案的優(yōu)點,同時也符合了多重的定義,并且更加平安。1.張等人的連續(xù)多重簽名方案的回憶1.1系統(tǒng)初始化首先,信托中心選擇兩個大素數(shù)p和q,并且計算RSA算法的模n=pq。然后,信托中心選擇一個隨機數(shù)e作為公鑰,它滿足gcd(e,)=1,這兒的gcd(·)是最大公約數(shù)函數(shù),=(p-1)(q-1),and1<e<.最后信托中心根據(jù)ed≡1mod((n))計算出私鑰d。與此同時,信托中心發(fā)布公鑰(n,e)和秘密保存(dp,q)。定義(i=1,2,…,k)是簽名者,他有一個獨家證書(i=1,2,…,k),這兒的是公開的,且將要被簽名的信息是M。對每個簽名者,信托中心計算和,并且通過一個平安渠道發(fā)送那個證書給每個簽名者,這兒的H(·)是保密散列函數(shù),這會產(chǎn)生一個固定長度的身份信息的憑證,是私鑰簽字。然后,相應的簽字確認證書的有效性,在持有公式的情況下,通過公式,并保持作為密鑰。1.2生成局部連續(xù)多重簽名作為新一代的準備局部簽名,信托中心通過簽名者的身份信息()發(fā)布簽名的順序。步驟1:簽名者U1選擇一個隨機數(shù)并且計算,,,,這兒的是U1的委托事項;綁定那些委托事項,并且明文通過散列函數(shù);(D1,f1)就是的簽名。然后,簽名者U1發(fā)送局部的簽名給簽名者.步驟2:通過類推,如果(i-1)次局部簽字是正確的,(2≤i<k)就創(chuàng)立i次簽字。他選擇一個隨機數(shù),并計算,,,.然后發(fā)送局部的簽名給簽名者.計算=H(),,.通過比擬和的值來驗證第i局部簽名的有效性,如果等于,那么那局部簽名是正確的,否那么是錯誤的。步驟3:創(chuàng)立下一局部簽名。以上過程重復執(zhí)行直到簽名者創(chuàng)立簽名并且將其發(fā)送給多重簽名接收者,這個接收者計算:,,.通過比擬和的值驗證簽名的有效性,最終的多重簽名是.2.張等人的連續(xù)多重簽名方案的加密分析當接收者在使用簽名時,他應該說服第三方,這是k個簽名者的正確簽署。第三方計算and,并且通過判斷等式〕是否存在來驗證這個多重簽名的有效性。這個簽名只有用的公鑰而不是所有k個簽名者共有的公鑰來驗證。因此,第三方不能區(qū)分這個簽名是由k個簽名者共同簽署還是由第k個簽名者一個人簽署。如果簽名者想說服第三方,他必須用所有簽名者的公鑰來驗證這個多重簽名。盡管能夠被公眾的計算以顯示這個多重簽名是由k個簽名者所簽署,但驗證者必須知道所有k局部的簽名,這違反了連續(xù)多重簽名的定義。驗證的計算量隨著簽名者的數(shù)目呈線性增加。因此,我們在這兒提出一種改良的方案,后面解決這個問題是基于參考文獻【2,5,6,7】中的方案。3基于RSA改良的連續(xù)多重簽名方案3.1初始化階段簽名者選擇一個隨機數(shù),計算,并且發(fā)送給.相似地,每個簽名者選擇一個隨機數(shù),計算且發(fā)送給簽名者.最后,計算,且發(fā)送給接收者.然后,計算m=H(M,)且公布m.3.2產(chǎn)生連續(xù)多重簽名的局部簽名步驟1:簽名者使用隨機數(shù)且計算.因為在初始化階段已經(jīng)發(fā)送給簽名者了,所以現(xiàn)在他只需發(fā)送給。計算和,且通過比擬和T1驗證(,).如果等于,那么那局部簽名是正確的.否那么,它是錯誤的,且需要讓位直到那局部簽名滿足驗證方程。步驟2:假定第(i-1)局部簽名是正確的(1<i<k),創(chuàng)立第i局部簽名如.然后發(fā)送那局部簽名給簽名者.計算,,及.通過比擬和驗證的有效性。步驟3:簽名者創(chuàng)立下一局部簽名。以上過程重復執(zhí)行直到簽名者創(chuàng)立最后局部的簽名并且將其發(fā)送給多重簽名接收者.計算,,及.通過比擬和來驗證(,)的有效性,最終多重簽名是由k簽名者共同簽署的,即(,,m).3.3作證有效性任何人都可以通過計算且比擬和來驗證多重簽名的有效性.多重簽名由k個簽名者簽署是正確的。證明:從連續(xù)多重簽名的過程中可以知道當接收者或者第三方驗證這個多重簽名時,他計算因為,我們得到。那么當且僅當?shù)扔跁r,簽名正確。4平安性分析張等人細節(jié)性的分析了他們的原始方案的平安性。在這兒,我們只分析了平安性相關的修改局部?!?〕驗證者知道這個多重簽名的簽署者。在改良方案中,每個簽名者的憑證被公開,并且驗證者為了驗證,必須用,,…,來計算,所以,他能夠區(qū)分開那個簽名是由k個簽名者簽署還是由第k個簽名者簽署?!?〕在初始化階段,的發(fā)布是平安的。在張等人的原始方案中,在簽名者之間被連續(xù)傳遞。而在這兒,在初始化階段被計算出。即使一個破壞者知道且能夠計算出的值,但他也不能由得到?!?〕多重簽名能抵抗偽造攻擊。如果攻擊者想偽造局部的簽名,他必須要偽造一個有效的滿足那個驗證公式。然而,是在初始化階段被公開的,并且不能被偽造,所以,他必須取得一個使其滿足公式.這是一個基于大整數(shù)分解的難題?!?〕所有的簽名者必須按照特定的次序。一個接一個簽名者Ui(i=2,…,k)通過的值驗證那局部簽名,這個過程是在初始化階段產(chǎn)生的。任何個體簽名者的障礙將導致創(chuàng)立多重簽名過程的終止。例如,如果簽名者在接到簽名局部之前創(chuàng)立局部簽名,那么≠將導致隨后的驗證階段和創(chuàng)立多重簽名過程的終止5性能分析定義符號,和作為建立多重簽名所消耗的時間,分別進行模冪和散列運算。在我們的方案中,來驗證前面局部的簽名所消耗的平均時間是,但是,直到及它們的產(chǎn)生將消耗的時間是,這可以預先計算。局部簽名的計算時間是.簽名和驗證的耗時都少于張等人的方案。因此,我們的方案是更加有效地。6結論我們指出張等人基于RSA的連續(xù)多重簽名方案的缺陷,那就是:驗證者不能區(qū)分簽名是由一組簽名者共同簽署還是僅由這組簽名者中的最后一位單獨簽署。為了克服這個缺陷,我們提出一個改良方案,在這個方案中,驗證者能夠知道簽名是由哪些人產(chǎn)生的。這個改良方案沒有增加計算量和通信費用;它的平安性是基于一個大整數(shù)分解的困難性。性能分析和平安性分析顯示,提出的這個方案比原來的方案更加平安和有效。譯文2:基于橢圓曲線的一種改良的數(shù)字簽名方案侯愛琴,張潔,高寶建,曹正文〔西北大學信息科學與技術學院,陜西西安710069〕ECC是基于有限域上,橢圓曲線點集所構成的群上定義的離散對數(shù)系統(tǒng).有限域上橢圓曲線的選擇,應防止使用超奇異曲線,以保證足夠的平安性.橢圓曲線的運算為給定橢圓曲線上的一個基點和一個整數(shù),求數(shù)乘,也是上的一點,計算(個相加)相對容易;但假設給定橢圓曲線上兩點和,求一整數(shù),使,特別是當G是較高階的基點時,那么非常困難。這就是橢圓曲線離散對數(shù)問題。基于橢圓曲線離散對數(shù)問題的難解性,形成了ECC體制。1.橢圓曲線密碼橢圓曲線密碼系統(tǒng)有多種形式,典型的如EIGamal系統(tǒng)。Diffie-Hellman密鑰交換協(xié)議:設E是一個素數(shù)域上的橢圓曲線,是曲線上公開的點,其階為。A秘密的選定一個隨機整數(shù),計算點,發(fā)送給B;同樣,B秘密的選定一個隨機整數(shù),計算點,發(fā)送給A。公鑰為,A用自己的私鑰乘以從B收到的計算得到;B用自己的私鑰乘以從A收到的計
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度建筑幕墻工程金屬幕墻清洗勞務分包合同樣本4篇
- 2025版智慧城市建設履約擔保合同模板4篇
- 2025年度二零二五年度木質包裝材料銷售合同范本4篇
- 2025年度個人意外傷害保險借款合同范本3篇
- 2025版小程序功能開發(fā)授權合同模板3篇
- 2025年分期付款數(shù)碼產(chǎn)品購買合同
- 2025年機械設備加工合同
- 2025版外貿出口農(nóng)產(chǎn)品質量安全合同3篇
- 2025年度環(huán)保認證木制品采購合同范本4篇
- 二零二五年度知識產(chǎn)權留置擔保協(xié)議書4篇
- 中國末端執(zhí)行器(靈巧手)行業(yè)市場發(fā)展態(tài)勢及前景戰(zhàn)略研判報告
- 北京離婚協(xié)議書(2篇)(2篇)
- 2025中國聯(lián)通北京市分公司春季校園招聘高頻重點提升(共500題)附帶答案詳解
- Samsung三星SMARTCAMERANX2000(20-50mm)中文說明書200
- 2024年藥品質量信息管理制度(2篇)
- 2024年安徽省高考地理試卷真題(含答案逐題解析)
- 廣東省廣州市2024年中考數(shù)學真題試卷(含答案)
- 內審檢查表完整版本
- 2024屆浙江寧波鎮(zhèn)海區(qū)中考生物全真模擬試題含解析
- 人教版八年級物理下冊 (功)教育教學課件
- 中藥的性能四氣五味課件
評論
0/150
提交評論