版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省廣州大附屬中學(xué)2024年中考五模數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,在中,邊上的高是()A. B. C. D.2.如圖,若△ABC內(nèi)接于半徑為R的⊙O,且∠A=60°,連接OB、OC,則邊BC的長(zhǎng)為()A. B. C. D.3.若關(guān)于x的一元二次方程ax2+2x﹣5=0的兩根中有且僅有一根在0和1之間(不含0和1),則a的取值范圍是()A.a(chǎn)<3B.a(chǎn)>3C.a(chǎn)<﹣3D.a(chǎn)>﹣34.如圖,取一張長(zhǎng)為、寬為的長(zhǎng)方形紙片,將它對(duì)折兩次后得到一張小長(zhǎng)方形紙片,若要使小長(zhǎng)方形與原長(zhǎng)方形相似,則原長(zhǎng)方形紙片的邊應(yīng)滿足的條件是()A. B. C. D.5.如圖,△ABC是⊙O的內(nèi)接三角形,AC是⊙O的直徑,∠C=50°,∠ABC的平分線BD交⊙O于點(diǎn)D,則∠BAD的度數(shù)是()A.45° B.85° C.90° D.95°6.一副直角三角板如圖放置,其中,,,點(diǎn)F在CB的延長(zhǎng)線上若,則等于()A.35° B.25° C.30° D.15°7.已知是二元一次方程組的解,則m+3n的值是()A.4 B.6 C.7 D.88.如圖,在平面直角坐標(biāo)系xOy中,菱形AOBC的一個(gè)頂點(diǎn)O在坐標(biāo)原點(diǎn),一邊OB在x軸的正半軸上,sin∠AOB=,反比例函數(shù)y=在第一象限內(nèi)的圖象經(jīng)過點(diǎn)A,與BC交于點(diǎn)F,則△AOF的面積等于()A.30 B.40 C.60 D.809.下列四張印有汽車品牌標(biāo)志圖案的卡片中,是中心對(duì)稱圖形的卡片是()A. B. C. D.10.如圖,已知∠AOB=70°,OC平分∠AOB,DC∥OB,則∠C為()A.20° B.35° C.45° D.70°二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.一個(gè)圓錐的母線長(zhǎng)為5cm,底面半徑為1cm,那么這個(gè)圓錐的側(cè)面積為_____cm1.12.二次根式中的字母a的取值范圍是_____.13.如圖,六邊形ABCDEF的六個(gè)內(nèi)角都相等.若AB=1,BC=CD=3,DE=2,則這個(gè)六邊形的周長(zhǎng)等于_________.14.若關(guān)于x的方程x2﹣8x+m=0有兩個(gè)相等的實(shí)數(shù)根,則m=_____.15.如圖,△ABC中,CD⊥AB于D,E是AC的中點(diǎn).若AD=6,DE=5,則CD的長(zhǎng)等于.16.如圖,在邊長(zhǎng)為3的菱形ABCD中,點(diǎn)E在邊CD上,點(diǎn)F為BE延長(zhǎng)線與AD延長(zhǎng)線的交點(diǎn).若DE=1,則DF的長(zhǎng)為________.三、解答題(共8題,共72分)17.(8分)正方形ABCD的邊長(zhǎng)是10,點(diǎn)E是AB的中點(diǎn),動(dòng)點(diǎn)F在邊BC上,且不與點(diǎn)B、C重合,將△EBF沿EF折疊,得到△EB′F.(1)如圖1,連接AB′.①若△AEB′為等邊三角形,則∠BEF等于多少度.②在運(yùn)動(dòng)過程中,線段AB′與EF有何位置關(guān)系?請(qǐng)證明你的結(jié)論.(2)如圖2,連接CB′,求△CB′F周長(zhǎng)的最小值.(3)如圖3,連接并延長(zhǎng)BB′,交AC于點(diǎn)P,當(dāng)BB′=6時(shí),求PB′的長(zhǎng)度.18.(8分)在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度,△ABC的三個(gè)頂點(diǎn)的位置如圖所示.現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)D,點(diǎn)E、F分別是B、C的對(duì)應(yīng)點(diǎn).請(qǐng)畫出平移后的△DEF.連接AD、CF,則這兩條線段之間的關(guān)系是________.19.(8分)如圖,AB是⊙O的直徑,點(diǎn)E是AD上的一點(diǎn),∠DBC=∠BED.(1)請(qǐng)判斷直線BC與⊙O的位置關(guān)系,并說明理由;(2)已知AD=5,CD=4,求BC的長(zhǎng).20.(8分)如圖,在等邊中,,點(diǎn)D是線段BC上的一動(dòng)點(diǎn),連接AD,過點(diǎn)D作,垂足為D,交射線AC與點(diǎn)設(shè)BD為xcm,CE為ycm.小聰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小聰?shù)奶骄窟^程,請(qǐng)補(bǔ)充完整:通過取點(diǎn)、畫圖、測(cè)量,得到了x與y的幾組值,如下表:012345___00說明:補(bǔ)全表格上相關(guān)數(shù)值保留一位小數(shù)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)線段BD是線段CE長(zhǎng)的2倍時(shí),BD的長(zhǎng)度約為_____cm.21.(8分)如圖,在平面直角坐標(biāo)系中,直線y=x+4與x軸、y軸分別交于A、B兩點(diǎn),拋物線y=-x2+bx+c經(jīng)過A、B兩點(diǎn),并與x軸交于另一點(diǎn)C(點(diǎn)C點(diǎn)A的右側(cè)),點(diǎn)P是拋物線上一動(dòng)點(diǎn).(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);(2)若點(diǎn)P在第二象限內(nèi),過點(diǎn)P作PD⊥軸于D,交AB于點(diǎn)E.當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),線段PE最長(zhǎng)?此時(shí)PE等于多少?(3)如果平行于x軸的動(dòng)直線l與拋物線交于點(diǎn)Q,與直線AB交于點(diǎn)N,點(diǎn)M為OA的中點(diǎn),那么是否存在這樣的直線l,使得△MON是等腰三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.22.(10分)如圖,是等腰三角形,,.(1)尺規(guī)作圖:作的角平分線,交于點(diǎn)(保留作圖痕跡,不寫作法);(2)判斷是否為等腰三角形,并說明理由.23.(12分)已知:如圖,∠ABC,射線BC上一點(diǎn)D.求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點(diǎn)P在∠ABC內(nèi)部,且點(diǎn)P到∠ABC兩邊的距離相等.24.計(jì)算
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據(jù)三角形的高線的定義解答.【詳解】根據(jù)高的定義,AF為△ABC中BC邊上的高.故選D.【點(diǎn)睛】本題考查了三角形的高的定義,熟記概念是解題的關(guān)鍵.2、D【解析】
延長(zhǎng)BO交圓于D,連接CD,則∠BCD=90°,∠D=∠A=60°;又BD=2R,根據(jù)銳角三角函數(shù)的定義得BC=R.【詳解】解:延長(zhǎng)BO交⊙O于D,連接CD,則∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴BC=R,故選D.【點(diǎn)睛】此題綜合運(yùn)用了圓周角定理、直角三角形30°角的性質(zhì)、勾股定理,注意:作直徑構(gòu)造直角三角形是解決本題的關(guān)鍵.3、B【解析】試題分析:當(dāng)x=0時(shí),y=-5;當(dāng)x=1時(shí),y=a-1,函數(shù)與x軸在0和1之間有一個(gè)交點(diǎn),則a-1>0,解得:a>1.考點(diǎn):一元二次方程與函數(shù)4、B【解析】
由題圖可知:得對(duì)折兩次后得到的小長(zhǎng)方形紙片的長(zhǎng)為,寬為,然后根據(jù)相似多邊形的定義,列出比例式即可求出結(jié)論.【詳解】解:由題圖可知:得對(duì)折兩次后得到的小長(zhǎng)方形紙片的長(zhǎng)為,寬為,∵小長(zhǎng)方形與原長(zhǎng)方形相似,故選B.【點(diǎn)睛】此題考查的是相似三角形的性質(zhì),根據(jù)相似三角形的定義列比例式是解決此題的關(guān)鍵.5、B【解析】
解:∵AC是⊙O的直徑,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分線BD交⊙O于點(diǎn)D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故選B.【點(diǎn)睛】本題考查圓周角定理;圓心角、弧、弦的關(guān)系.6、D【解析】
直接利用三角板的特點(diǎn),結(jié)合平行線的性質(zhì)得出∠BDE=45°,進(jìn)而得出答案.【詳解】解:由題意可得:∠EDF=30°,∠ABC=45°,
∵DE∥CB,
∴∠BDE=∠ABC=45°,
∴∠BDF=45°-30°=15°.
故選D.【點(diǎn)睛】此題主要考查了平行線的性質(zhì),根據(jù)平行線的性質(zhì)得出∠BDE的度數(shù)是解題關(guān)鍵.7、D【解析】分析:根據(jù)二元一次方程組的解,直接代入構(gòu)成含有m、n的新方程組,解方程組求出m、n的值,代入即可求解.詳解:根據(jù)題意,將代入,得:,①+②,得:m+3n=8,故選D.點(diǎn)睛:此題主要考查了二元一次方程組的解,利用代入法求出未知參數(shù)是解題關(guān)鍵,比較簡(jiǎn)單,是??碱}型.8、B【解析】
過點(diǎn)A作AM⊥x軸于點(diǎn)M,設(shè)OA=a,通過解直角三角形找出點(diǎn)A的坐標(biāo),結(jié)合反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出a的值,再根據(jù)四邊形OACB是菱形、點(diǎn)F在邊BC上,即可得出S△AOF=S菱形OBCA,結(jié)合菱形的面積公式即可得出結(jié)論.【詳解】過點(diǎn)A作AM⊥x軸于點(diǎn)M,如圖所示.設(shè)OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA?sin∠AOB=a,OM==a,∴點(diǎn)A的坐標(biāo)為(a,a).∵點(diǎn)A在反比例函數(shù)y=的圖象上,∴a?a=a2=48,解得:a=1,或a=-1(舍去).∴AM=8,OM=6,OB=OA=1.∵四邊形OACB是菱形,點(diǎn)F在邊BC上,∴S△AOF=S菱形OBCA=OB?AM=2.故選B.【點(diǎn)睛】本題考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是找出S△AOF=S菱形OBCA.9、C【解析】試題分析:由中心對(duì)稱圖形的概念可知,這四個(gè)圖形中只有第三個(gè)是中心對(duì)稱圖形,故答案選C.考點(diǎn):中心對(duì)稱圖形的概念.10、B【解析】解:∵OC平分∠AOB,∴∠AOC=∠BOC=∠AOB=35°,∵CD∥OB,∴∠BOC=∠C=35°,故選B.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】分析:根據(jù)圓錐的側(cè)面展開圖為扇形,先計(jì)算出圓錐的底面圓的周長(zhǎng),然后利用扇形的面積公式求解.詳解:∵圓錐的底面半徑為5cm,∴圓錐的底面圓的周長(zhǎng)=1π?5=10π,∴圓錐的側(cè)面積=?10π?1=10π(cm1).故答案為10π.點(diǎn)睛:本題考查了圓錐的側(cè)面積的計(jì)算:圓錐的側(cè)面展開圖為扇形,扇形的弧長(zhǎng)為圓錐的底面周長(zhǎng),扇形的半徑為圓錐的母線長(zhǎng).也考查了扇形的面積公式:S=?l?R,(l為弧長(zhǎng)).12、a≥﹣1.【解析】
根據(jù)二次根式的被開方數(shù)為非負(fù)數(shù),可以得出關(guān)于a的不等式,繼而求得a的取值范圍.【詳解】由分析可得,a+1≥0,解得:a≥﹣1.【點(diǎn)睛】熟練掌握二次根式被開方數(shù)為非負(fù)數(shù)是解答本題的關(guān)鍵.13、2【解析】
凸六邊形ABCDEF,并不是一規(guī)則的六邊形,但六個(gè)角都是110°,所以通過適當(dāng)?shù)南蛲庾餮娱L(zhǎng)線,可得到等邊三角形,進(jìn)而求解.【詳解】解:如圖,分別作直線AB、CD、EF的延長(zhǎng)線和反向延長(zhǎng)線使它們交于點(diǎn)G、H、P.∵六邊形ABCDEF的六個(gè)角都是110°,∴六邊形ABCDEF的每一個(gè)外角的度數(shù)都是60°.∴△AHF、△BGC、△DPE、△GHP都是等邊三角形.∴GC=BC=3,DP=DE=1.∴GH=GP=GC+CD+DP=3+3+1=8,F(xiàn)A=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-1=1.∴六邊形的周長(zhǎng)為1+3+3+1+4+1=2.故答案為2.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)及判定定理;解題中巧妙地構(gòu)造了等邊三角形,從而求得周長(zhǎng).是非常完美的解題方法,注意學(xué)習(xí)并掌握.14、1【解析】
根據(jù)判別式的意義得到△=(﹣8)2﹣4m=0,然后解關(guān)于m的方程即可.【詳解】△=(﹣8)2﹣4m=0,解得m=1,故答案為:1.【點(diǎn)睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2﹣4ac有如下關(guān)系:當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0時(shí),方程無實(shí)數(shù)根.15、1.【解析】
由“直角三角形斜邊上的中線等于斜邊的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理來求線段CD的長(zhǎng)度即可.【詳解】∵△ABC中,CD⊥AB于D,E是AC的中點(diǎn),DE=5,∴DE=AC=5,∴AC=2.在直角△ACD中,∠ADC=90°,AD=6,AC=2,則根據(jù)勾股定理,得.故答案是:1.16、1.1【解析】
求出EC,根據(jù)菱形的性質(zhì)得出AD∥BC,得出相似三角形,根據(jù)相似三角形的性質(zhì)得出比例式,代入求出即可.【詳解】∵DE=1,DC=3,∴EC=3-1=2,∵四邊形ABCD是菱形,∴AD∥BC,∴△DEF∽△CEB,∴,∴,∴DF=1.1,故答案為1.1.【點(diǎn)睛】此題主要考查了相似三角形的判定與性質(zhì),解題關(guān)鍵是根據(jù)菱形的性質(zhì)證明△DEF∽△CEB,然后根據(jù)相似三角形的性質(zhì)可求解.三、解答題(共8題,共72分)17、(1)①∠BEF=60°;②AB'∥EF,證明見解析;(2)△CB′F周長(zhǎng)的最小值5+5;(3)PB′=.【解析】
(1)①當(dāng)△AEB′為等邊三角形時(shí),∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°;②依據(jù)AE=B′E,可得∠EAB′=∠EB′A,再根據(jù)∠BEF=∠B′EF,即可得到∠BEF=∠BAB′,進(jìn)而得出EF∥AB′;(2)由折疊可得,CF+B′F=CF+BF=BC=10,依據(jù)B′E+B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,進(jìn)而得到B′C最小值為5﹣5,故△CB′F周長(zhǎng)的最小值=10+5﹣5=5+5;(3)將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長(zhǎng)MB、NP相交于點(diǎn)Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,設(shè)PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.依據(jù)∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的長(zhǎng)度.【詳解】(1)①當(dāng)△AEB′為等邊三角形時(shí),∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°,故答案為60;②AB′∥EF,證明:∵點(diǎn)E是AB的中點(diǎn),∴AE=BE,由折疊可得BE=B′E,∴AE=B′E,∴∠EAB′=∠EB′A,又∵∠BEF=∠B′EF,∴∠BEF=∠BAB′,∴EF∥AB′;(2)如圖,點(diǎn)B′的軌跡為半圓,由折疊可得,BF=B′F,∴CF+B′F=CF+BF=BC=10,∵B′E+B′C≥CE,∴B′C≥CE﹣B′E=5﹣5,∴B′C最小值為5﹣5,∴△CB′F周長(zhǎng)的最小值=10+5﹣5=5+5;(3)如圖,連接AB′,易得∠AB′B=90°,將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長(zhǎng)MB、NP相交于點(diǎn)Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,由AB=10,BB′=6,可得AB′=8,∴QM=QN=AB′=8,設(shè)PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.∵∠BQP=90°,∴22+(8﹣x)2=(6+x)2,解得:x=,∴PB′=x=.【點(diǎn)睛】本題屬于四邊形綜合題,主要考查了折疊的性質(zhì),等邊三角形的性質(zhì),正方形的判定與性質(zhì)以及勾股定理的綜合運(yùn)用,解題的關(guān)鍵是設(shè)要求的線段長(zhǎng)為x,然后根據(jù)折疊和軸對(duì)稱的性質(zhì)用含x的代數(shù)式表示其他線段的長(zhǎng)度,選擇適當(dāng)?shù)闹苯侨切?,運(yùn)用勾股定理列出方程求出答案.18、見解析【解析】(1)如圖:(2)連接AD、CF,則這兩條線段之間的關(guān)系是AD=CF,且AD∥CF.19、(1)BC與⊙O相切;理由見解析;(2)BC=6【解析】試題分析:(1)BC與⊙O相切;由已知可得∠BAD=∠BED又由∠DBC=∠BED可得∠BAD=∠DBC,由AB為直徑可得∠ADB=90°,從而可得∠CBO=90°,繼而可得BC與⊙O相切(2)由AB為直徑可得∠ADB=90°,從而可得∠BDC=90°,由BC與⊙O相切,可得∠CBO=90°,從而可得∠BDC=∠CBO,可得ΔABC~ΔBDC,所以得BCCD=ACBC,得試題解析:(1)BC與⊙O相切;∵BD=BD,∴∠BAD=∠BED,∵∠DBC=∠BED,∴∠BAD=∠DBC,∵AB為直徑,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,∴∠CBO=90°,∴點(diǎn)B在⊙O上,∴BC與(2)∵AB為直徑,∴∠ADB=90°,∴∠BDC=90°,∵BC與⊙O相切,∴∠CBO=90°,∴∠BDC=∠CBO,∴ΔABC~ΔBDC,∴BCCD=ACBC,∴BC考點(diǎn):1.切線的判定與性質(zhì);2.相似三角形的判定與性質(zhì);3.勾股定理.20、(1)1.1;(2)見解析;(3).【解析】
(1)(2)需要認(rèn)真按題目要求測(cè)量,描點(diǎn)作圖;(3)線段BD是線段CE長(zhǎng)的2倍的條件可以轉(zhuǎn)化為一次函數(shù)圖象,通過數(shù)形結(jié)合解決問題.【詳解】根據(jù)題意測(cè)量約故應(yīng)填:根據(jù)題意畫圖:當(dāng)線段BD是線段CE長(zhǎng)的2倍時(shí),得到圖象,該圖象與中圖象的交點(diǎn)即為所求情況,測(cè)量得BD長(zhǎng)約.故答案為(1)1.1;(2)見解析;(3)1.7.【點(diǎn)睛】本題考查函數(shù)作圖和函數(shù)圖象實(shí)際意義的理解,在中,考查學(xué)生由數(shù)量關(guān)系得到函數(shù)關(guān)系的轉(zhuǎn)化思想.21、(1)y=-x2-2x+1,C(1,0)(2)當(dāng)t=-2時(shí),線段PE的長(zhǎng)度有最大值1,此時(shí)P(-2,6)(2)存在這樣的直線l,使得△MON為等腰三角形.所求Q點(diǎn)的坐標(biāo)為(,2)或(,2)或(,2)或(,2)【解析】解:(1)∵直線y=x+1與x軸、y軸分別交于A、B兩點(diǎn),∴A(-1,0),B(0,1).∵拋物線y=-x2+bx+c經(jīng)過A、B兩點(diǎn),∴,解得.∴拋物線解析式為y=-x2-2x+1.令y=0,得-x2-2x+1=0,解得x1=-1,x2=1,∴C(1,0).(2)如圖1,設(shè)D(t,0).∵OA=OB,∴∠BAO=15°.∴E(t,t+1),P(t,-t2-2t+1).PE=yP-yE=-t2-2t+1-t-1=-t2-1t=-(t+2)2+1.∴當(dāng)t=-2時(shí),線段PE的長(zhǎng)度有最大值1,此時(shí)P(-2,6).(2)存在.如圖2,過N點(diǎn)作NH⊥x軸于點(diǎn)H.設(shè)OH=m(m>0),∵OA=OB,∴∠BAO=15°.∴NH=AH=1-m,∴yQ=1-m.又M為OA中點(diǎn),∴MH=2-m.當(dāng)△MON為等腰三角形時(shí):①若MN=ON,則H為底邊OM的中點(diǎn),∴m=1,∴yQ=1-m=2.由-xQ2-2xQ+1=2,解得.∴點(diǎn)Q坐標(biāo)為(,2)或(,2).②若MN=OM=2,則在Rt△MNH中,根據(jù)勾股定理得:MN2=NH2+MH2,即22=(1-m)2+(2-m)2,化簡(jiǎn)得m2-6m+8=0,解得:m1=2,m2=1(不合題意,舍去).∴yQ=2,由-xQ2-2xQ+1=2,解得.∴點(diǎn)Q坐標(biāo)為(,2)或(,2).③若ON=OM=2,則在Rt△NOH中,根據(jù)勾股定理得:ON2=NH2+OH2,即22=(1-m)2+m2,化簡(jiǎn)得m2-1m+6=0,∵△=-8<0,∴此時(shí)不存在這樣的直線l,使得△MON為等腰三角形.綜上所述,存在這樣的直線l,使得△MON為等腰三角形.所求Q點(diǎn)的坐標(biāo)為(,2)或(,2)或(,2)或(,2).(1)首先求得A、B點(diǎn)的坐標(biāo),然后利用待定系數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度生物醫(yī)藥研發(fā)中心實(shí)驗(yàn)用品存儲(chǔ)合同4篇
- 二零二五年度食品加工代工訂單合同模板4篇
- 2025年度成魚養(yǎng)殖與漁業(yè)科普教育合作合同3篇
- 二零二四年度休閑漁業(yè)魚池承包經(jīng)營(yíng)合同3篇
- 2025年度床上用品品牌戰(zhàn)略規(guī)劃合作合同4篇
- 2025年度存量房買賣與產(chǎn)權(quán)分割服務(wù)合同4篇
- 2025年度藥店?duì)I業(yè)員藥品陳列與展示聘用合同4篇
- 二零二四企業(yè)人才測(cè)評(píng)與選拔中介合同3篇
- 二零二五年度船運(yùn)水泥運(yùn)輸合同運(yùn)輸工具維護(hù)規(guī)范4篇
- 2025年度滅火器生產(chǎn)質(zhì)量控制與驗(yàn)收合同4篇
- 2025年度版權(quán)授權(quán)協(xié)議:游戲角色形象設(shè)計(jì)與授權(quán)使用3篇
- 心肺復(fù)蘇課件2024
- 《城鎮(zhèn)燃?xì)忸I(lǐng)域重大隱患判定指導(dǎo)手冊(cè)》專題培訓(xùn)
- 湖南財(cái)政經(jīng)濟(jì)學(xué)院專升本管理學(xué)真題
- 全國(guó)身份證前六位、區(qū)號(hào)、郵編-編碼大全
- 2024-2025學(xué)年福建省廈門市第一中學(xué)高一(上)適應(yīng)性訓(xùn)練物理試卷(10月)(含答案)
- 《零售學(xué)第二版教學(xué)》課件
- 廣東省珠海市香洲區(qū)2023-2024學(xué)年四年級(jí)下學(xué)期期末數(shù)學(xué)試卷
- 房地產(chǎn)行業(yè)職業(yè)生涯規(guī)劃
- 江蘇省建筑與裝飾工程計(jì)價(jià)定額(2014)電子表格版
- MOOC 數(shù)字電路與系統(tǒng)-大連理工大學(xué) 中國(guó)大學(xué)慕課答案
評(píng)論
0/150
提交評(píng)論