版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年吉林省長春市九臺市畢業(yè)升學考試模擬卷數學卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在射線OA,OB上分別截取OA1=OB1,連接A1B1,在B1A1,B1B上分別截取B1A2=B1B2,連接A2B2,…按此規(guī)律作下去,若∠A1B1O=α,則∠A10B10O=()A. B. C. D.2.在聯歡會上,甲、乙、丙3人分別站在不在同一直線上的三點A、B、C上,他們在玩搶凳子的游戲,要在他們中間放一個木凳,誰先搶到凳子誰獲勝,為使游戲公平,凳子應放的最恰當的位置是△ABC的()A.三條高的交點 B.重心 C.內心 D.外心3.如圖,在4×4的正方形網格中,每個小正方形的邊長都為1,△AOB的三個頂點都在格點上,現將△AOB繞點O逆時針旋轉90°后得到對應的△COD,則點A經過的路徑弧AC的長為()A. B.π C.2π D.3π4.對于不為零的兩個實數a,b,如果規(guī)定:a★b=,那么函數y=2★x的圖象大致是()A. B. C. D.5.下列圖案中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.6.計算:的結果是()A. B.. C. D.7.如圖,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分別以點A,B為圓心,大于線段AB長度的一半為半徑作弧,相交于點E,F,過點E,F作直線EF,交AB于點D,連接CD,則△ACD的周長為()A.13 B.17 C.18 D.258.若關于x的一元二次方程x(x+2)=m總有兩個不相等的實數根,則()A.m<﹣1 B.m>1 C.m>﹣1 D.m<19.已知兩點都在反比例函數圖象上,當時,,則的取值范圍是()A. B. C. D.10.數軸上分別有A、B、C三個點,對應的實數分別為a、b、c且滿足,|a|>|c|,b?c<0,則原點的位置()A.點A的左側 B.點A點B之間C.點B點C之間 D.點C的右側二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,⊙C經過原點且與兩坐標軸分別交于點A與點B,點B的坐標為(﹣,0),M是圓上一點,∠BMO=120°.⊙C圓心C的坐標是_____.12.已知直線與拋物線交于A,B兩點,則_______.13.如圖,在△ABC中,BA=BC=4,∠A=30°,D是AC上一動點,AC的長=_____;BD+DC的最小值是_____.14.方程的解是_________.15.分解因式:=__________________.16.當x________時,分式有意義.三、解答題(共8題,共72分)17.(8分)如圖,AD是等腰△ABC底邊BC上的高,點O是AC中點,延長DO到E,使AE∥BC,連接AE.求證:四邊形ADCE是矩形;①若AB=17,BC=16,則四邊形ADCE的面積=.②若AB=10,則BC=時,四邊形ADCE是正方形.18.(8分)如圖,在△ABC中,∠ACB=90°,O是邊AC上一點,以O為圓心,以OA為半徑的圓分別交AB、AC于點E、D,在BC的延長線上取點F,使得BF=EF.(1)判斷直線EF與⊙O的位置關系,并說明理由;(2)若∠A=30°,求證:DG=DA;(3)若∠A=30°,且圖中陰影部分的面積等于2,求⊙O的半徑的長.19.(8分)某商場甲、乙兩名業(yè)務員10個月的銷售額(單位:萬元)如下:甲7.29.69.67.89.346.58.59.99.6乙5.89.79.76.89.96.98.26.78.69.7根據上面的數據,將下表補充完整:4.0≤x≤4.95.0≤x≤5.96.0≤x≤6.97.0≤x≤7.98.0≤x≤8.99.0≤x≤10.0甲101215乙_______________________________(說明:月銷售額在8.0萬元及以上可以獲得獎金,7.0~7.9萬元為良好,6.0~6.9萬元為合格,6.0萬元以下為不合格)兩組樣本數據的平均數、中位數、眾數如表所示:結論:人員平均數(萬元)中位數(萬元)眾數(萬元)甲8.28.99.6乙8.28.49.7(1)估計乙業(yè)務員能獲得獎金的月份有______個;(2)可以推斷出_____業(yè)務員的銷售業(yè)績好,理由為_______.(至少從兩個不同的角度說明推斷的合理性)20.(8分)的除以20與18的差,商是多少?21.(8分)某中學課外活動小組準備圍建一個矩形生物苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊的長為x米.若平行于墻的一邊長為y米,直接寫出y與x的函數關系式及其自變量x的取值范圍.垂直于墻的一邊的長為多少米時,這個苗圃園的面積最大,并求出這個最大值.22.(10分)如圖,四邊形AOBC是正方形,點C的坐標是(4,0).正方形AOBC的邊長為,點A的坐標是.將正方形AOBC繞點O順時針旋轉45°,點A,B,C旋轉后的對應點為A′,B′,C′,求點A′的坐標及旋轉后的正方形與原正方形的重疊部分的面積;動點P從點O出發(fā),沿折線OACB方向以1個單位/秒的速度勻速運動,同時,另一動點Q從點O出發(fā),沿折線OBCA方向以2個單位/秒的速度勻速運動,運動時間為t秒,當它們相遇時同時停止運動,當△OPQ為等腰三角形時,求出t的值(直接寫出結果即可).23.(12分)(1)解方程:x2﹣5x﹣6=0;(2)解不等式組:.24.解方程:=1.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
根據等腰三角形兩底角相等用α表示出∠A2B2O,依此類推即可得到結論.【詳解】∵B1A2=B1B2,∠A1B1O=α,∴∠A2B2O=α,同理∠A3B3O=×α=α,∠A4B4O=α,∴∠AnBnO=α,∴∠A10B10O=,故選B.【點睛】本題考查了等腰三角形兩底角相等的性質,圖形的變化規(guī)律,依次求出相鄰的兩個角的差,得到分母成2的指數次冪變化,分子不變的規(guī)律是解題的關鍵.2、D【解析】
為使游戲公平,要使凳子到三個人的距離相等,于是利用線段垂直平分線上的點到線段兩端的距離相等可知,要放在三邊中垂線的交點上.【詳解】∵三角形的三條垂直平分線的交點到中間的凳子的距離相等,∴凳子應放在△ABC的三條垂直平分線的交點最適當.故選D.【點睛】本題主要考查了線段垂直平分線的性質的應用;利用所學的數學知識解決實際問題是一種能力,要注意培養(yǎng).想到要使凳子到三個人的距離相等是正確解答本題的關鍵.3、A【解析】
根據旋轉的性質和弧長公式解答即可.【詳解】解:∵將△AOB繞點O逆時針旋轉90°后得到對應的△COD,∴∠AOC=90°,∵OC=3,∴點A經過的路徑弧AC的長==,故選:A.【點睛】此題考查弧長計算,關鍵是根據旋轉的性質和弧長公式解答.4、C【解析】
先根據規(guī)定得出函數y=2★x的解析式,再利用一次函數與反比例函數的圖象性質即可求解.【詳解】由題意,可得當2<x,即x>2時,y=2+x,y是x的一次函數,圖象是一條射線除去端點,故A、D錯誤;當2≥x,即x≤2時,y=﹣,y是x的反比例函數,圖象是雙曲線,分布在第二、四象限,其中在第四象限時,0<x≤2,故B錯誤.故選:C.【點睛】本題考查了新定義,函數的圖象,一次函數與反比例函數的圖象性質,根據新定義得出函數y=2★x的解析式是解題的關鍵.5、B【解析】
根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;
B、是軸對稱圖形,也是中心對稱圖形,故此選項正確;
C、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;
D、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤.
故選B.【點睛】考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.6、B【解析】
根據分式的運算法則即可求出答案.【詳解】解:原式===故選;B【點睛】本題考查分式的運算法則,解題關鍵是熟練運用分式的運算法則,本題屬于基礎題型.7、C【解析】在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根據勾股定理求得AB=13.根據題意可知,EF為線段AB的垂直平分線,在Rt△ABC中,根據直角三角形斜邊的中線等于斜邊的一半可得CD=AD=AB,所以△ACD的周長為AC+CD+AD=AC+AB=5+13=18.故選C.8、C【解析】
將關于x的一元二次方程化成標準形式,然后利用Δ>0,即得m的取值范圍.【詳解】因為方程是關于x的一元二次方程方程,所以可得,Δ=4+4m>0,解得m>﹣1,故選D.【點睛】本題熟練掌握一元二次方程的基本概念是本題的解題關鍵.9、B【解析】
根據反比例函數的性質判斷即可.【詳解】解:∵當x1<x2<0時,y1<y2,
∴在每個象限y隨x的增大而增大,
∴k<0,
故選:B.【點睛】本題考查了反比例函數的性質,解題的關鍵是熟練掌握反比例函數的性質.10、C【解析】分析:根據題中所給條件結合A、B、C三點的相對位置進行分析判斷即可.詳解:A選項中,若原點在點A的左側,則,這與已知不符,故不能選A;B選項中,若原點在A、B之間,則b>0,c>0,這與b·c<0不符,故不能選B;C選項中,若原點在B、C之間,則且b·c<0,與已知條件一致,故可以選C;D選項中,若原點在點C右側,則b<0,c<0,這與b·c<0不符,故不能選D.故選C.點睛:理解“數軸上原點右邊的點表示的數是正數,原點表示的是0,原點左邊的點表示的數是負數,距離原點越遠的點所表示的數的絕對值越大”是正確解答本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、(,)【解析】
連接AB,OC,由圓周角定理可知AB為⊙C的直徑,再根據∠BMO=120°可求出∠BAO以及∠BCO的度數,在Rt△COD中,解直角三角形即可解決問題;【詳解】連接AB,OC,∵∠AOB=90°,∴AB為⊙C的直徑,∵∠BMO=120°,∴∠BAO=60°,∴∠BCO=2∠BAO=120°,過C作CD⊥OB于D,則OD=OB,∠DCB=∠DCO=60°,∵B(-,0),∴BD=OD=在Rt△COD中.CD=OD?tan30°=,∴C(-,),故答案為C(-,).【點睛】本題考查的是圓心角、弧、弦的關系及圓周角定理、直角三角形的性質、坐標與圖形的性質及特殊角的三角函數值,根據題意畫出圖形,作出輔助線,利用數形結合求解是解答此題的關鍵.12、【解析】
將一次函數解析式代入二次函數解析式中,得出關于x的一元二次方程,根據根與系數的關系得出“x+x=-=,xx==-1”,將原代數式通分變形后代入數據即可得出結論.【詳解】將代入到中得,,整理得,,∴,,∴.【點睛】此題考查了二次函數的性質和一次函數的性質,解題關鍵在于將一次函數解析式代入二次函數解析式13、(Ⅰ)AC=4(Ⅱ)4,2.【解析】
(Ⅰ)如圖,過B作BE⊥AC于E,根據等腰三角形的性質和解直角三角形即可得到結論;(Ⅱ)如圖,作BC的垂直平分線交AC于D,則BD=CD,此時BD+DC的值最小,解直角三角形即可得到結論.【詳解】解:(Ⅰ)如圖,過B作BE⊥AC于E,∵BA=BC=4,∴AE=CE,∵∠A=30°,∴AE=AB=2,∴AC=2AE=4;(Ⅱ)如圖,作BC的垂直平分線交AC于D,則BD=CD,此時BD+DC的值最小,∵BF=CF=2,∴BD=CD==,∴BD+DC的最小值=2,故答案為:4,2.【點睛】本題考查了等腰三角形的性質,線段垂直平分線的性質,解直角三角形,正確的作出輔助線是解題的關鍵.14、x=-2【解析】方程兩邊同時平方得:,解得:,檢驗:(1)當x=3時,方程左邊=-3,右邊=3,左邊右邊,因此3不是原方程的解;(2)當x=-2時,方程左邊=2,右邊=2,左邊=右邊,因此-2是方程的解.∴原方程的解為:x=-2.故答案為:-2.點睛:(1)根號下含有未知數的方程叫無理方程,解無理方程的基本思想是化“無理方程”為“有理方程”;(2)解無理方程和解分式方程相似,求得未知數的值之后要檢驗,看所得結果是原方程的解還是增根.15、【解析】
原式提取2,再利用完全平方公式分解即可.【詳解】原式【點睛】先考慮提公因式法,再用公式法進行分解,最后考慮十字相乘,差項補項等方法.16、x≠3【解析】由題意得x-3≠0,∴x≠3.三、解答題(共8題,共72分)17、(1)見解析;(2)①1;②.【解析】試題分析:(1)根據平行四邊形的性質得出四邊形ADCE是平行四邊形,根據垂直推出∠ADC=90°,根據矩形的判定得出即可;(2)①求出DC,根據勾股定理求出AD,根據矩形的面積公式求出即可;②要使ADCE是正方形,只需要AC⊥DE,即∠DOC=90°,只需要OD2+OC2=DC2,即可得到BC的長.試題解析:(1)證明:∵AE∥BC,∴∠AEO=∠CDO.又∵∠AOE=∠COD,OA=OC,∴△AOE≌△COD,∴OE=OD,而OA=OC,∴四邊形ADCE是平行四邊形.∵AD是BC邊上的高,∴∠ADC=90°.∴□ADCE是矩形.(2)①解:∵AD是等腰△ABC底邊BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD===12,∴四邊形ADCE的面積是AD×DC=12×8=1.②當BC=時,DC=DB=.∵ADCE是矩形,∴OD=OC=2.∵OD2+OC2=DC2,∴∠DOC=90°,∴AC⊥DE,∴ADCE是正方形.點睛:本題考查了平行四邊形的判定,矩形的判定和性質,等腰三角形的性質,勾股定理的應用,能綜合運用定理進行推理和計算是解答此題的關鍵,比較典型,難度適中.18、(1)EF是⊙O的切線,理由詳見解析;(1)詳見解析;(3)⊙O的半徑的長為1.【解析】
(1)連接OE,根據等腰三角形的性質得到∠A=∠AEO,∠B=∠BEF,于是得到∠OEG=90°,即可得到結論;(1)根據含30°的直角三角形的性質證明即可;(3)由AD是⊙O的直徑,得到∠AED=90°,根據三角形的內角和得到∠EOD=60°,求得∠EGO=30°,根據三角形和扇形的面積公式即可得到結論.【詳解】解:(1)連接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90°,∴∠A+∠B=90°,∴∠AEO+∠BEF=90°,∴∠OEG=90°,∴EF是⊙O的切線;(1)∵∠AED=90°,∠A=30°,∴ED=AD,∵∠A+∠B=90°,∴∠B=∠BEF=60°,∵∠BEF+∠DEG=90°,∴∠DEG=30°,∵∠ADE+∠A=90°,∴∠ADE=60°,∵∠ADE=∠EGD+∠DEG,∴∠DGE=30°,∴∠DEG=∠DGE,∴DG=DE,∴DG=DA;(3)∵AD是⊙O的直徑,∴∠AED=90°,∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,∵陰影部分的面積解得:r1=4,即r=1,即⊙O的半徑的長為1.【點睛】本題考查了切線的判定,等腰三角形的性質,圓周角定理,扇形的面積的計算,正確的作出輔助線是解題的關鍵.19、填表見解析;(1)6;(2)甲;甲的銷售額的中位數較大,并且甲月銷售額在9萬元以上的月份多.【解析】
(1)月銷售額在8.0萬元及以上可以獲得獎金,去銷售額中找到乙大于8.0的個數即可解題,(2)根據中位數和平均數即可解題.【詳解】解:如圖,銷售額數量x人員4.0≤x≤4.95.0≤x≤5.96.0≤x≤6.97.0≤x≤7.98.0≤x≤8.99.0≤x≤10.0甲101215乙013024(1)估計乙業(yè)務員能獲得獎金的月份有6個;(2)可以推斷出甲業(yè)務員的銷售業(yè)績好,理由為:甲的銷售額的中位數較大,并且甲月銷售額在9萬元以上的月份多.故答案為0,1,3,0,2,4;6;甲,甲的銷售額的中位數較大,并且甲月銷售額在9萬元以上的月份多.【點睛】本題考查了統(tǒng)計的相關知識,眾數,平均數的應用,屬于簡單題,將圖表信息轉換成有用信息是解題關鍵.20、【解析】
根據題意可用乘的積除以20與18的差,所得的商就是所求的數,列式解答即可.【詳解】解:×÷(20﹣18)【點睛】考查有理數的混合運算,列出式子是解題的關鍵.21、112.1【解析】試題分析:(1)根據題意即可求得y與x的函數關系式為y=30﹣2x與自變量x的取值范圍為6≤x<11;(2)設矩形苗圃園的面積為S,由S=xy,即可求得S與x的函數關系式,根據二次函數的最值問題,即可求得這個苗圃園的面積最大值.試題解析:解:(1)y=30﹣2x(6≤x<11).(2)設矩形苗圃園的面積為S,則S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.1)2+112.1,由(1)知,6≤x<11,∴當x=7.1時,S最大值=112.1,即當矩形苗圃園垂直于墻的一邊的長為7.1米時,這個苗圃園的面積最大,這個最大值為112.1.點睛:此題考查了二次函數的實際應用問題.解題的關鍵是根據題意構建二次函數模型,然后根據二次函數的性質求解即可.22、(1)4,;(2)旋轉后的正方形與原正方形的重疊部分的面積為;(3).【解析】
(1)連接AB,根據△OCA為等腰三角形可得AD=OD的長,從而得出點A的坐標,則得出正方形AOBC的面積;
(2)根據旋轉的性質可得OA′的長,從而得出A′C,A′E,再求出面積即可;
(3)根據P、Q點在不同的線段上運動情況,可分為三種列式①當點P、Q分別在OA、OB時,②當點P在OA上,點Q在BC上時,③當點P、Q在AC上時,可方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025雅戈爾品牌服裝與泰富百貨服裝買賣合同
- 2025高考教室采購合同
- 二零二五年度個人旅游貸款合同與旅行社擔保服務協議3篇
- 2024年租賃購買合同:汽車租賃兼購買協議
- 2025年度混合料供應鏈管理合同3篇
- 2025關于網絡服務代理合同
- 2024新版消費協議合同標準版3篇
- 2025股權委托合同書范文
- 2024年跨境電商產業(yè)投資借款協議3篇
- 2024年項目資金運用擔保協議模板版B版
- 2025年中小學春節(jié)安全教育主題班會課件
- 激勵約束考核實施細則
- 抽獎券模板(可修改)
- 高壓蒸汽滅菌效果監(jiān)測記錄簿表(完整版)
- 人教版物理八年級上冊全冊知識點總結
- 編織密度自動計算
- 硝酸及液體硝酸銨生產行業(yè)風險分級管控體系實施指南
- 瑤醫(yī)目診圖-望面診病圖解-目診
- 染色體標本的制作及組型觀察
- 導游實務課件
- 藝術類核心期刊目錄
評論
0/150
提交評論