版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆河南省南召縣聯(lián)考中考數(shù)學(xué)最后一模試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.輪船沿江從港順流行駛到港,比從港返回港少用3小時(shí),若船速為26千米/時(shí),水速為2千米/時(shí),求港和港相距多少千米.設(shè)港和港相距千米.根據(jù)題意,可列出的方程是().A. B.C. D.2.世界因愛而美好,在今年我校的“獻(xiàn)愛心”捐款活動(dòng)中,九年級(jí)三班50名學(xué)生積極加獻(xiàn)愛心捐款活動(dòng),班長將捐款情況進(jìn)行了統(tǒng)計(jì),并繪制成了統(tǒng)計(jì)圖,根據(jù)圖中提供的信息,捐款金額的眾數(shù)和中位數(shù)分別是A.20、20 B.30、20 C.30、30 D.20、303.矩形ABCD的頂點(diǎn)坐標(biāo)分別為A(1,4)、B(1,1)、C(5,1),則點(diǎn)D的坐標(biāo)為()A.(5,5) B.(5,4) C.(6,4) D.(6,5)4.下列計(jì)算中,錯(cuò)誤的是()A.; B.; C.; D..5.把不等式組的解集表示在數(shù)軸上,正確的是()A. B.C. D.6.不等式組中兩個(gè)不等式的解集,在數(shù)軸上表示正確的是A. B.C. D.7.明明和亮亮都在同一直道A、B兩地間做勻速往返走鍛煉明明的速度小于亮亮的速度忽略掉頭等時(shí)間明明從A地出發(fā),同時(shí)亮亮從B地出發(fā)圖中的折線段表示從開始到第二次相遇止,兩人之間的距離米與行走時(shí)間分的函數(shù)關(guān)系的圖象,則A.明明的速度是80米分 B.第二次相遇時(shí)距離B地800米C.出發(fā)25分時(shí)兩人第一次相遇 D.出發(fā)35分時(shí)兩人相距2000米8.反比例函數(shù)是y=的圖象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限9.如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)C,B,E在y軸上,Rt△ABC經(jīng)過變化得到Rt△EDO,若點(diǎn)B的坐標(biāo)為(0,1),OD=2,則這種變化可以是()A.△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,再向下平移5個(gè)單位長度B.△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,再向下平移5個(gè)單位長度C.△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,再向左平移3個(gè)單位長度D.△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,再向右平移1個(gè)單位長度10.如圖是一個(gè)由5個(gè)相同的正方體組成的立體圖形,它的俯視圖是()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖所示,在平面直角坐標(biāo)系中,已知反比例函數(shù)y=(x>0)的圖象和菱形OABC,且OB=4,tan∠BOC=,若將菱形向右平移,菱形的兩個(gè)頂點(diǎn)B、C恰好同時(shí)落在反比例函數(shù)的圖象上,則反比例函數(shù)的解析式是______________.12.=__________13.為了了解貫徹執(zhí)行國家提倡的“陽光體育運(yùn)動(dòng)”的實(shí)施情況,將某班50名同學(xué)一周的體育鍛煉情況繪制成了如圖所示的條形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖提供的數(shù)據(jù),該班50名同學(xué)一周參加體育鍛煉時(shí)間的中位數(shù)與眾數(shù)之和為_____.14.如圖,身高是1.6m的某同學(xué)直立于旗桿影子的頂端處,測得同一時(shí)刻該同學(xué)和旗桿的影子長分別為1.2m和9m.則旗桿的高度為________m.15.如圖,△ABC三邊的中線AD,BE,CF的公共點(diǎn)G,若,則圖中陰影部分面積是.16.?dāng)?shù)學(xué)家吳文俊院士非常重視古代數(shù)學(xué)家賈憲提出的“從長方形對(duì)角線上任一點(diǎn)作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等(如圖所示)”這一推論,他從這一推論出發(fā),利用“出入相補(bǔ)”原理復(fù)原了《海島算經(jīng)》九題古證.(以上材料來源于《古證復(fù)原的原則》《吳文俊與中國數(shù)學(xué)》和《古代世界數(shù)學(xué)泰斗劉徽》)請(qǐng)根據(jù)上圖完成這個(gè)推論的證明過程.證明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(______________+______________).易知,S△ADC=S△ABC,______________=______________,______________=______________.可得S矩形NFGD=S矩形EBMF.三、解答題(共8題,共72分)17.(8分)已知邊長為2a的正方形ABCD,對(duì)角線AC、BD交于點(diǎn)Q,對(duì)于平面內(nèi)的點(diǎn)P與正方形ABCD,給出如下定義:如果,則稱點(diǎn)P為正方形ABCD的“關(guān)聯(lián)點(diǎn)”.在平面直角坐標(biāo)系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“關(guān)聯(lián)點(diǎn)”有_____;(2)已知點(diǎn)E的橫坐標(biāo)是m,若點(diǎn)E在直線上,并且E是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,求m的取值范圍;(3)若將正方形ABCD沿x軸平移,設(shè)該正方形對(duì)角線交點(diǎn)Q的橫坐標(biāo)是n,直線與x軸、y軸分別相交于M、N兩點(diǎn).如果線段MN上的每一個(gè)點(diǎn)都是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,求n的取值范圍.18.(8分)甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過程中,甲、乙兩人間的距離y(米)與甲出發(fā)的時(shí)間x(分)之間的關(guān)系如圖中折線OA-AB-BC-CD所示.(1)求線段AB的表達(dá)式,并寫出自變量x的取值范圍;(2)求乙的步行速度;(3)求乙比甲早幾分鐘到達(dá)終點(diǎn)?19.(8分)我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明)20.(8分)已知:如圖,在正方形ABCD中,點(diǎn)E、F分別在BC和CD上,AE=AF.求證:BE=DF;連接AC交EF于點(diǎn)O,延長OC至點(diǎn)M,使OM=OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.21.(8分)如圖,AB是半圓O的直徑,D為弦BC的中點(diǎn),延長OD交弧BC于點(diǎn)E,點(diǎn)F為OD的延長線上一點(diǎn)且滿足∠OBC=∠OFC,求證:CF為⊙O的切線;若四邊形ACFD是平行四邊形,求sin∠BAD的值.22.(10分)A,B兩地相距20km.甲、乙兩人都由A地去B地,甲騎自行車,平均速度為10km/h;乙乘汽車,平均速度為40km/h,且比甲晚1.5h出發(fā).設(shè)甲的騎行時(shí)間為x(h)(0≤x≤2)(1)根據(jù)題意,填寫下表:時(shí)間x(h)與A地的距離0.51.8_____甲與A地的距離(km)520乙與A地的距離(km)012(2)設(shè)甲,乙兩人與A地的距離為y1(km)和y2(km),寫出y1,y2關(guān)于x的函數(shù)解析式;(3)設(shè)甲,乙兩人之間的距離為y,當(dāng)y=12時(shí),求x的值.23.(12分)已知:如圖.D是的邊上一點(diǎn),,交于點(diǎn)M,.(1)求證:;(2)若,試判斷四邊形的形狀,并說明理由.24.先化簡,再求值:(﹣)÷,其中x的值從不等式組的整數(shù)解中選?。?/p>
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
通過題意先計(jì)算順流行駛的速度為26+2=28千米/時(shí),逆流行駛的速度為:26-2=24千米/時(shí).根據(jù)“輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時(shí)”,得出等量關(guān)系,據(jù)此列出方程即可.【詳解】解:設(shè)A港和B港相距x千米,可得方程:故選:A.【點(diǎn)睛】本題考查了由實(shí)際問題抽象出一元一次方程,抓住關(guān)鍵描述語,找到等量關(guān)系是解決問題的關(guān)鍵.順?biāo)俣?水流速度+靜水速度,逆水速度=靜水速度-水流速度.2、C【解析】分析:由表提供的信息可知,一組數(shù)據(jù)的眾數(shù)是這組數(shù)中出現(xiàn)次數(shù)最多的數(shù),而中位數(shù)則是將這組數(shù)據(jù)從小到大(或從大到?。┮来闻帕袝r(shí),處在最中間位置的數(shù),據(jù)此可知這組數(shù)據(jù)的眾數(shù),中位數(shù).詳解:根據(jù)右圖提供的信息,捐款金額的眾數(shù)和中位數(shù)分別是30,30.故選C.點(diǎn)睛:考查眾數(shù)和中位數(shù)的概念,熟記概念是解題的關(guān)鍵.3、B【解析】
由矩形的性質(zhì)可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求點(diǎn)D坐標(biāo).【詳解】解:∵四邊形ABCD是矩形
∴AB∥CD,AB=CD,AD=BC,AD∥BC,
∵A(1,4)、B(1,1)、C(5,1),
∴AB∥CD∥y軸,AD∥BC∥x軸
∴點(diǎn)D坐標(biāo)為(5,4)
故選B.【點(diǎn)睛】本題考查了矩形的性質(zhì),坐標(biāo)與圖形性質(zhì),關(guān)鍵是熟練掌握這些性質(zhì).4、B【解析】分析:根據(jù)零指數(shù)冪、有理數(shù)的乘方、分?jǐn)?shù)指數(shù)冪及負(fù)整數(shù)指數(shù)冪的意義作答即可.詳解:A.,故A正確;B.,故B錯(cuò)誤;C..故C正確;D.,故D正確;故選B.點(diǎn)睛:本題考查了零指數(shù)冪、有理數(shù)的乘方、分?jǐn)?shù)指數(shù)冪及負(fù)整數(shù)指數(shù)冪的意義,需熟練掌握且區(qū)分清楚,才不容易出錯(cuò).5、B【解析】
首先解出各個(gè)不等式的解集,然后求出這些解集的公共部分即可.【詳解】解:由x﹣2≥0,得x≥2,由x+1<0,得x<﹣1,所以不等式組無解,故選B.【點(diǎn)睛】解不等式組時(shí)要注意解集的確定原則:同大取大,同小取小,大小小大取中間,大大小小無解了.6、B【解析】由①得,x<3,由②得,x≥1,所以不等式組的解集為:1≤x<3,在數(shù)軸上表示為:,故選B.7、B【解析】
C、由二者第二次相遇的時(shí)間結(jié)合兩次相遇分別走過的路程,即可得出第一次相遇的時(shí)間,進(jìn)而得出C選項(xiàng)錯(cuò)誤;A、當(dāng)時(shí),出現(xiàn)拐點(diǎn),顯然此時(shí)亮亮到達(dá)A地,利用速度路程時(shí)間可求出亮亮的速度及兩人的速度和,二者做差后可得出明明的速度,進(jìn)而得出A選項(xiàng)錯(cuò)誤;B、根據(jù)第二次相遇時(shí)距離B地的距離明明的速度第二次相遇的時(shí)間、B兩地間的距離,即可求出第二次相遇時(shí)距離B地800米,B選項(xiàng)正確;D、觀察函數(shù)圖象,可知:出發(fā)35分鐘時(shí)亮亮到達(dá)A地,根據(jù)出發(fā)35分鐘時(shí)兩人間的距離明明的速度出發(fā)時(shí)間,即可求出出發(fā)35分鐘時(shí)兩人間的距離為2100米,D選項(xiàng)錯(cuò)誤.【詳解】解:第一次相遇兩人共走了2800米,第二次相遇兩人共走了米,且二者速度不變,
,
出發(fā)20分時(shí)兩人第一次相遇,C選項(xiàng)錯(cuò)誤;
亮亮的速度為米分,
兩人的速度和為米分,
明明的速度為米分,A選項(xiàng)錯(cuò)誤;
第二次相遇時(shí)距離B地距離為米,B選項(xiàng)正確;
出發(fā)35分鐘時(shí)兩人間的距離為米,D選項(xiàng)錯(cuò)誤.
故選:B.【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用,觀察函數(shù)圖象,逐一分析四個(gè)選項(xiàng)的正誤是解題的關(guān)鍵.8、B【解析】
解:∵反比例函數(shù)是y=中,k=2>0,
∴此函數(shù)圖象的兩個(gè)分支分別位于一、三象限.
故選B.9、C【解析】
Rt△ABC通過變換得到Rt△ODE,應(yīng)先旋轉(zhuǎn)然后平移即可【詳解】∵Rt△ABC經(jīng)過變化得到Rt△EDO,點(diǎn)B的坐標(biāo)為(0,1),OD=2,∴DO=BC=2,CO=3,∴將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,再向下平移3個(gè)單位長度,即可得到△DOE;或?qū)ⅰ鰽BC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,再向左平移3個(gè)單位長度,即可得到△DOE;故選:C.【點(diǎn)睛】本題考查的是坐標(biāo)與圖形變化旋轉(zhuǎn)和平移的知識(shí),解題的關(guān)鍵在于利用旋轉(zhuǎn)和平移的概念和性質(zhì)求坐標(biāo)的變化10、C【解析】
根據(jù)俯視圖的概念可知,只需找到從上面看所得到的圖形即可.【詳解】解:從上面看易得:有2列小正方形,第1列有2個(gè)正方形,第2列有2個(gè)正方形,故選C.【點(diǎn)睛】考查下三視圖的概念;主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看所得到的圖形;二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】解:連接AC,交y軸于D.∵四邊形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD.∵OB=4,tan∠BOC=,∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2).設(shè)菱形平移后B的坐標(biāo)是(x,4),C的坐標(biāo)是(1+x,2).∵B、C落在反比例函數(shù)的圖象上,∴k=4x=2(1+x),解得:x=1,即菱形平移后B的坐標(biāo)是(1,4),代入反比例函數(shù)的解析式得:k=1×4=4,即B、C落在反比例函數(shù)的圖象上,菱形的平移距離是1,反比例函數(shù)的解析式是y=.故答案為y=.點(diǎn)睛:本題考查了菱形的性質(zhì),用待定系數(shù)法求反比例函數(shù)的解析式,平移的性質(zhì)的應(yīng)用,主要考查學(xué)生的計(jì)算能力.12、2;【解析】試題解析:先求-2的平方4,再求它的算術(shù)平方根,即:.13、17【解析】∵8是出現(xiàn)次數(shù)最多的,∴眾數(shù)是8,∵這組數(shù)據(jù)從小到大的順序排列,處于中間位置的兩個(gè)數(shù)都是9,∴中位數(shù)是9,所以中位數(shù)與眾數(shù)之和為8+9=17.故答案為17小時(shí).14、1【解析】試題分析:利用相似三角形的相似比,列出方程,通過解方程求出旗桿的高度即可.解:∵同一時(shí)刻物高與影長成正比例.設(shè)旗桿的高是xm.∴1.6:1.2=x:9∴x=1.即旗桿的高是1米.故答案為1.考點(diǎn):相似三角形的應(yīng)用.15、4【解析】試題分析:由中線性質(zhì),可得AG=2GD,則,∴陰影部分的面積為4;其實(shí)圖中各個(gè)單獨(dú)小三角形面積都相等本題雖然超綱,但學(xué)生容易蒙對(duì)的.考點(diǎn):中線的性質(zhì).16、S△AEFS△FMCS△ANFS△AEFS△FGCS△FMC【解析】
根據(jù)矩形的性質(zhì):矩形的對(duì)角線把矩形分成面積相等的兩部分,由此即可證明結(jié)論.【詳解】S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(S△ANF+S△FCM).易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,可得S矩形NFGD=S矩形EBMF.故答案分別為S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.【點(diǎn)睛】本題考查矩形的性質(zhì),解題的關(guān)鍵是靈活運(yùn)用矩形的對(duì)角線把矩形分成面積相等的兩部分這個(gè)性質(zhì),屬于中考??碱}型.三、解答題(共8題,共72分)17、(1)正方形ABCD的“關(guān)聯(lián)點(diǎn)”為P2,P3;(2)或;(3).【解析】
(1)正方形ABCD的“關(guān)聯(lián)點(diǎn)”中正方形的內(nèi)切圓和外切圓之間(包括兩個(gè)圓上的點(diǎn)),由此畫出圖形即可判斷;(2)因?yàn)镋是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,所以E在正方形ABCD的內(nèi)切圓和外接圓之間(包括兩個(gè)圓上的點(diǎn)),因?yàn)镋在直線上,推出點(diǎn)E在線段FG上,求出點(diǎn)F、G的橫坐標(biāo),再根據(jù)對(duì)稱性即可解決問題;(3)因?yàn)榫€段MN上的每一個(gè)點(diǎn)都是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,分兩種情形:①如圖3中,MN與小⊙Q相切于點(diǎn)F,求出此時(shí)點(diǎn)Q的橫坐標(biāo);②M如圖4中,落在大⊙Q上,求出點(diǎn)Q的橫坐標(biāo)即可解決問題;【詳解】(1)由題意正方形ABCD的“關(guān)聯(lián)點(diǎn)”中正方形的內(nèi)切圓和外切圓之間(包括兩個(gè)圓上的點(diǎn)),觀察圖象可知:正方形ABCD的“關(guān)聯(lián)點(diǎn)”為P2,P3;(2)作正方形ABCD的內(nèi)切圓和外接圓,∴OF=1,,.∵E是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,∴E在正方形ABCD的內(nèi)切圓和外接圓之間(包括兩個(gè)圓上的點(diǎn)),∵點(diǎn)E在直線上,∴點(diǎn)E在線段FG上.分別作FF’⊥x軸,GG’⊥x軸,∵OF=1,,∴,.∴.根據(jù)對(duì)稱性,可以得出.∴或.(3)∵、N(0,1),∴,ON=1.∴∠OMN=60°.∵線段MN上的每一個(gè)點(diǎn)都是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,①M(fèi)N與小⊙Q相切于點(diǎn)F,如圖3中,∵QF=1,∠OMN=60°,∴.∵,∴.∴.②M落在大⊙Q上,如圖4中,∵,,∴.∴.綜上:.【點(diǎn)睛】本題考查一次函數(shù)綜合題、正方形的性質(zhì)、直線與圓的位置關(guān)系等知識(shí),解題的關(guān)鍵是理解題意,學(xué)會(huì)尋找特殊位置解決數(shù)學(xué)問題,屬于中考?jí)狠S題.18、(1);(2)80米/分;(3)6分鐘【解析】
(1)根據(jù)圖示,設(shè)線段AB的表達(dá)式為:y=kx+b,把把(4,240),(16,0)代入得到關(guān)于k,b的二元一次方程組,解之,即可得到答案,
(2)根據(jù)線段OA,求出甲的速度,根據(jù)圖示可知:乙在點(diǎn)B處追上甲,根據(jù)速度=路程÷時(shí)間,計(jì)算求值即可,
(3)根據(jù)圖示,求出二者相遇時(shí)與出發(fā)點(diǎn)的距離,進(jìn)而求出與終點(diǎn)的距離,結(jié)合(2)的結(jié)果,分別計(jì)算出相遇后,到達(dá)終點(diǎn)甲和乙所用的時(shí)間,二者的時(shí)間差即可所求答案.【詳解】(1)根據(jù)題意得:
設(shè)線段AB的表達(dá)式為:y=kx+b(4≤x≤16),
把(4,240),(16,0)代入得:,
解得:,
即線段AB的表達(dá)式為:y=-20x+320(4≤x≤16),
(2)又線段OA可知:甲的速度為:=60(米/分),
乙的步行速度為:=80(米/分),
答:乙的步行速度為80米/分,
(3)在B處甲乙相遇時(shí),與出發(fā)點(diǎn)的距離為:240+(16-4)×60=960(米),
與終點(diǎn)的距離為:2400-960=1440(米),
相遇后,到達(dá)終點(diǎn)甲所用的時(shí)間為:=24(分),
相遇后,到達(dá)終點(diǎn)乙所用的時(shí)間為:=18(分),
24-18=6(分),
答:乙比甲早6分鐘到達(dá)終點(diǎn).【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用,正確掌握分析函數(shù)圖象是解題的關(guān)鍵.19、(1)證明見解析;(2)四邊形EFGH是菱形,證明見解析;(3)四邊形EFGH是正方形.【解析】
(1)如圖1中,連接BD,根據(jù)三角形中位線定理只要證明EH∥FG,EH=FG即可.(2)四邊形EFGH是菱形.先證明△APC≌△BPD,得到AC=BD,再證明EF=FG即可.(3)四邊形EFGH是正方形,只要證明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可證明∠COD=∠CPD=90°,再根據(jù)平行線的性質(zhì)即可證明.【詳解】(1)證明:如圖1中,連接BD.∵點(diǎn)E,H分別為邊AB,DA的中點(diǎn),∴EH∥BD,EH=BD,∵點(diǎn)F,G分別為邊BC,CD的中點(diǎn),∴FG∥BD,F(xiàn)G=BD,∴EH∥FG,EH=GF,∴中點(diǎn)四邊形EFGH是平行四邊形.(2)四邊形EFGH是菱形.證明:如圖2中,連接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵點(diǎn)E,F(xiàn),G分別為邊AB,BC,CD的中點(diǎn),∴EF=AC,F(xiàn)G=BD,∵四邊形EFGH是平行四邊形,∴四邊形EFGH是菱形.(3)四邊形EFGH是正方形.證明:如圖2中,設(shè)AC與BD交于點(diǎn)O.AC與PD交于點(diǎn)M,AC與EH交于點(diǎn)N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四邊形EFGH是菱形,∴四邊形EFGH是正方形.考點(diǎn):平行四邊形的判定與性質(zhì);中點(diǎn)四邊形.20、(1)證明見解析;(2)四邊形AEMF是菱形,證明見解析.【解析】
(1)求簡單的線段相等,可證線段所在的三角形全等,即證△ABE≌△ADF;(2)由于四邊形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;聯(lián)立(1)的結(jié)論,可證得EC=CF,根據(jù)等腰三角形三線合一的性質(zhì)可證得OC(即AM)垂直平分EF;已知OA=OM,則EF、AM互相平分,再根據(jù)一組鄰邊相等的平行四邊形是菱形,即可判定四邊形AEMF是菱形.【詳解】(1)證明:∵四邊形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵,∴Rt△ADF≌Rt△ABE(HL)∴BE=DF;(2)四邊形AEMF是菱形,理由為:證明:∵四邊形ABCD是正方形,∴∠BCA=∠DCA=45°(正方形的對(duì)角線平分一組對(duì)角),BC=DC(正方形四條邊相等),∵BE=DF(已證),∴BC-BE=DC-DF(等式的性質(zhì)),即CE=CF,在△COE和△COF中,,∴△COE≌△COF(SAS),∴OE=OF,又OM=OA,∴四邊形AEMF是平行四邊形(對(duì)角線互相平分的四邊形是平行四邊形),∵AE=AF,∴平行四邊形AEMF是菱形.21、(1)見解析;(2).【解析】
(1)連接OC,根據(jù)等腰三角形的性質(zhì)得到∠OCB=∠B,∠OCB=∠F,根據(jù)垂徑定理得到OF⊥BC,根據(jù)余角的性質(zhì)得到∠OCF=90°,于是得到結(jié)論;
(2)過D作DH⊥AB于H,根據(jù)三角形的中位線的想知道的OD=AC,根據(jù)平行四邊形的性質(zhì)得到DF=AC,設(shè)OD=x,得到AC=DF=2x,根據(jù)射影定理得到CD=x,求得BD=x,根據(jù)勾股定理得到AD=x,于是得到結(jié)論.【詳解】解:(1)連接OC,
∵OC=OB,
∴∠OCB=∠B,
∵∠B=∠F,
∴∠OCB=∠F,
∵D為BC的中點(diǎn),
∴OF⊥BC,
∴∠F+∠FCD=90°,
∴∠OCB+∠FCD=90°,
∴∠OCF=90°,
∴CF為⊙O的切線;
(2)過D作DH⊥AB于H,
∵AO=OB,CD=DB,
∴OD=AC,
∵四邊形ACFD是平行四邊形,
∴DF=AC,
設(shè)OD=x,
∴AC=DF=2x,
∵∠OCF=90°,CD⊥OF,
∴CD2=OD?DF=2x2,
∴CD=x,
∴BD=x,
∴AD=x,
∵OD=x,BD=x,
∴OB=x,
∴DH=x,
∴sin∠BAD==.【點(diǎn)睛】本題考查了切線的判定和性質(zhì),平行四邊形的性質(zhì),垂徑定理,射影定理,勾股定理,三角函數(shù)的定義,正確的作出輔助線是解題的關(guān)鍵.22、(1)18,2,20(2)(3)當(dāng)y=12時(shí),x的值是1.2或1.6【解析】
(Ⅰ)根據(jù)路程、時(shí)間、速度三者間的關(guān)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國管道斜流風(fēng)機(jī)數(shù)據(jù)監(jiān)測研究報(bào)告
- 鐵路工程板梁吊裝協(xié)議
- 校園體育空間功能多樣性與利用效率研究報(bào)告
- 2025至2030年中國半自動(dòng)玻璃切割流水線數(shù)據(jù)監(jiān)測研究報(bào)告
- 2025年中國高效復(fù)合緩蝕阻垢劑市場調(diào)查研究報(bào)告
- 2025年中國防水圍布市場調(diào)查研究報(bào)告
- 2025年中國祛痘無痕霜市場調(diào)查研究報(bào)告
- 旅游景區(qū)物業(yè)承租居間協(xié)議
- 2025年中國滴水瓦市場調(diào)查研究報(bào)告
- 2025年中國木百葉裝飾板市場調(diào)查研究報(bào)告
- 第二章 運(yùn)營管理戰(zhàn)略
- 《三本白皮書》全文內(nèi)容及應(yīng)知應(yīng)會(huì)知識(shí)點(diǎn)
- 專題14 思想方法專題:線段與角計(jì)算中的思想方法壓軸題四種模型全攻略(解析版)
- 醫(yī)院外來器械及植入物管理制度(4篇)
- 圖像識(shí)別領(lǐng)域自適應(yīng)技術(shù)-洞察分析
- 港口與港口工程概論
- 《念珠菌感染的治療》課件
- 新概念英語第二冊考評(píng)試卷含答案(第49-56課)
- 商業(yè)倫理與企業(yè)社會(huì)責(zé)任(山東財(cái)經(jīng)大學(xué))智慧樹知到期末考試答案章節(jié)答案2024年山東財(cái)經(jīng)大學(xué)
- 【奧運(yùn)會(huì)獎(jiǎng)牌榜預(yù)測建模實(shí)證探析12000字(論文)】
- (完整版)譯林版英語詞匯表(四年級(jí)下)
評(píng)論
0/150
提交評(píng)論