




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Contentslistsavailableat
ScienceDirect
SoftwareX
journalhomepage:
/locate/softx
SoftwareX10(2019)100295
Softwareupdate
Update(1.1)toANDURIL—AMATLABtoolboxforANalysisandDecisionswithUnceRtaInty:Learningfromexpertjudgments
ANDURYL
CornelisMarcelPieter’tHart
a
,
b
,
?
,GeorgiosLeontaris
a
,OswaldoMorales-Nápoles
a
aCivilEngineeringandGeosciences,DelftUniversityofTechnology,TheNetherlands
bTunnelEngineeringConsultants(TEC),Amersfoort,TheNetherlands
article info
Articlehistory:
Received9July2019
Receivedinrevisedform19July2019Accepted23July2019
Keywords:
StructuredexpertjudgmentCooke’sclassicalmodelExpertopinion
PythontoolboxEXCALIBURsoftwareANDURIL
abstract
ThisisanupdatetoPII:
S2352711018300608
Inthispaper,wediscussANDURYL,whichisaPython-basedopensourcesuccessoroftheMATLABtoolboxANDURIL.TheoutputofANDURYLisingoodagreementwiththeresultsobtainedfromANDURILandEXCALIBUR.AdditionalfeaturesavailableinANDURYL,andnotavailableinitspredecessors,arediscussed.
?2018TheAuthors.PublishedbyElsevierB.V.Allrightsreserved.
Codemetadata
Currentcodeversion Code:ANDURYLv1.0,Paperv1.1
Permanentlinktocode/repositoryusedforthiscodeversion
/ElsevierSoftwareX/SOFTX_2019_237
CodeOceancomputecapsule
/10.24433/CO.7459237.v1
LegalCodeLicense GNUGeneralPublicLicense
Codeversioningsystemused None
Softwarecodelanguages,tools,andservicesused Python,SCIPY,NUMPY,MATPLOTLIB
Compilationrequirements,operatingenvironments&dependencies PythonVERSION3.6
IfavailableLinktodeveloperdocumentation/manual
/10.24433/CO.7459237.v1
Supportemailforquestions
C.M.P.tHart@tudelft.nl
Softwaremetadata
Currentcodeversion ANDURYLv1.0
Permanentlinktocode/repositoryusedforthiscodeversion
CodeOcean
LegalCodeLicense GNUGeneralPublicLicense
Codeversioningsystemused CodeOcean
Softwarecodelanguages,tools,andservicesused Python,SCIPY,NUMPY,MATPLOTLIB
Compilationrequirements,operatingenvironments&dependencies PythonVERSION3.6
IfavailableLinktodeveloperdocumentation/manual
/10.24433/CO.7459237.v1
Supportemailforquestions
C.M.P.tHart@tudelft.nl
DOIoforiginalarticle:
/10.1016/j.softx.2018.07.001
.
?
Correspondingauthorat:CivilEngineeringandGeosciences,DelftUniversityofTechnology,TheNetherlands.
E-mailaddress:
c.m.p.thart@tudelft.nl
(C.M.P.’tHart).
/10.1016/j.softx.2019.100295
2352-7110/?2018TheAuthors.PublishedbyElsevierB.V.Allrightsreserved.
PAGE
2
C.M.P.’tHart,G.LeontarisandO.Morales-Nápoles/SoftwareX10(2019)100295
C.M.P.’tHart,G.LeontarisandO.Morales-Nápoles/SoftwareX10(2019)100295
PAGE
3
Table1
OverviewofresultcomparisonAIandAYagainstCC.
Software
Numberofstudiescompared
Numberofdifferentscoresin
Table
2
Numberofscoreswithapproximationdifferences
NumberofscoreswhereAI
=AYbutdifferenttoCC
RelativeagreementaftercorrectionforapproximationandAI=AY
AI
18(55%)
13(96%)
4
9
100%
AY
33(100%)
23(96%)
8
9
99%
Motivationandsignificance
AMATLABtoolbox,namedANDURIL,
1
(AI),implementingCooke’sclassicalmodel[
1
]forstructuredexpertjudgmentispresentedin[
2
].UntilrecentlyEXCALIBUR
2
(CC)wastheonlyavailablesoftwareimplementingCooke’sclassicalmethod.ThoughEggstaff’sstudieswerebasedonaMATLABimplemen-tation
3
[
3
,
4
],thedevelopedsourcecodeforthesestudiesisnotavailablefordistribution.
InthispaperwepresentANDURYL(AY),whichisaPython[
5
]implementationofCooke’sclassicalmodel[
1
].TheprogramnamereplacingtheIwithYindicatesthattheAYsourceisbasedonPythoninsteadofMATLAB.TheprogramstructureofAIhasbeenretainedinthisimplementation.ThemainobviousadvantageofAYisthattheMATLABlicenserequiredforAIisnotrequiredforAY.OtheraddedfeatureswithrespecttoAIwillbediscussedalongthispaper.
Softwaredescription
AYisrunfromthecommandlinewiththePythonfunctionmain.py,asitdoesnothaveagraphicaluserinterface.Userscanadaptthecodetoruntheirownstudiesinsequencesaspresentedinanduryl_example.py.TheprogramstructureissetupinsuchawaythatthereisonemainPythonfunctionandurylwhichisusedtorunthefullscopeofAY.Inthismainscript,thedataobtainedfromexpertjudgmentsmaybeenteredinordertoconductthedesiredanalysis.Theinputvariablesaresetasglobalvariablesandbackedup.With‘restore’statementsthevariablescanberesettotheoriginalinputvalues,whichcanbeusedinlatercalculations,butmightalsobeusefulinfurtherdevelopmentsofAY.Inthecurrentimplementation,thisisusedintheprocessforinvestigatingtherobustnessoftheobtainedDecisionMakers(DM).ThesupportedfunctionalitiesofCooke’sclassicalmodelinAYare:
CalculationofDMusingglobalweights;
CalculationofDMusingitemweights;
CalculationofDMusingequaloruserdefinedweights;
OptimizationofDM;
Robustnesscheckitemwise;
Robustnesscheckexpertwise;
Plottingassessmentsitemwise;
Plottingrobustnessresults.
ThefunctionsofAYaresimilartothefunctionspresentedforAI.AYkeepsitsarchitectureassimilaraspossibletothatofAI.Themaindifferencehoweverisinthefunctioncalcu-late_weights,whichmergesAI’sfunctionsglobal_weightsanditem_weights.AmoredetailedexplanationoftheprogramispresentedintheSupplement.TheremainingdifferenceswillbefurtherdiscussedinSection
4
.Nextwepresentresultsofcom-paringAY’soutputtobothCCandtheMATLABimplementationAI.
Freelyavailableat
/ElsevierSoftwareX/SOFTX_2018_39
.
Freelyavailableat
/wp/excalibur
.
ThisMATLABimplementationisnotEXCALIBUR.
ComparingoutputofANDURYLwithpreviousexpertjudg-mentstudies
In[
4
],33post-2006studiesusingCooke’sclassicalmethodarepresentedusingCC.WeusethesedatatocompareoutputfromAYtobothCCandtheMATLABimplementationAIofthepreviouspaper[
2
].
Table
2
presentstheresultsreportedinTable1of[
4
](thestudynamefollowedbyCC)extendedwithcalculationsfromAI(AI)andAY(AY).
Table
2
includesthestatisticalaccuracy(SA),information(In)andthecombinedscores(Co).
Equalweight,Globalweightswithoutoptimization(GlobalNoOp.),Globalweightsoptimized(PWGlobal),Itemweightsoptimized(PWItem)andtheexpertwithhighestcombinedscore(BestExpert)arepresented.Inthesupplement,anextendedtableincludingItemweightswithoutoptimization(ItemNoOp.)andtheexpertwiththelowestcombinedscoreispresented.
Fromthe33studiesreported[
4
],14wereperformedusing5quantiles,3withquantilesotherthanthe5th,50thand95thorcontainedmissingitemsforsomeexperts.TheseresultscannotbecomparedwithAIandaremarkedby(*).OntheEBPPstudy,asoftwareerrorappearedintheMATLABcode.ThiserrorwillberesolvedinafutureupdateofAI.Hence,atotal18studieswerecomparedwithAI.Eachstudyin
Table
2
presents17numbers.Differencesbetweenthecalculationsreportedin[
4
]andAIarehighlightedinblue.Thereareatotalof153bluenumbersin
306
Table
2
andhenceanagreementof(1?13)×100≈96%between
AIandthecalculationsreportedin[
4
]forthestudiesthatcanbecompared.Fromthe13numbers4areclearlyapproximationdifferences.NoticethatthoughthenumbersinCCareMATLAB-basedwecompareourresultstothepublishedresultsin[
4
]andnowaytoinvestigatefurthertheapproximationusedin[
4
]isavailabletotheauthors.Additionally,9numbersareequaltotheresultsobtainedwithAY.Thesetwoobservationswouldbringtheagreementto100%.
Differencesbetweenthecalculationsreportedin[
4
]andAYarehighlightedinredinthesametable.Thereareatotalof23
561
rednumbersin
Table
2
andhenceanagreementof(1?23)×
100≈96%betweenAYandthecalculationsreportedin[
4
].Fromthe23rednumbers8areclearlyapproximationdifferences.Additionally,9AYresultsareequaltothoseobtainedwithAIwhichwouldbringtheagreementto≈99%.ThisresultindicatethatbothAIandAYmaybeusedwithenoughconfidencebyinterestedusers.
Theresultsofthecomparisonaresummarizedin
1
.
In
Table
2
,9valuesareequalforAIandAYbutdifferentcom-paredtoCC.Theauthorscheckedtheinputfilesofthe‘‘Icesheets"study.Itwasfoundthattherealizationfile(*.rls)andthefilewithassessments(*.dtt)presentedinconsistenciesinthelabelingofassessmentquestions.WespeculatethatthiscouldbethesourceofthismisalignmentofbothAIandAYwithCC.
Thedifferencesfoundinthe‘‘Gerstenberger",‘‘Goodheart"and‘‘Hemopilia"studyarerelatedtotheoptimizationprocess.Forexample,theoptimizationprocessfor‘‘Goodheart"datashowsinCC1expertastheoptimalcombination.ForbothAIandAYtheoptimalcombinationconsistsof3experts.WithoutthesourcecodeofCCtheauthorscannotinvestigatefurtherthissourceofmisalignment.
Table2
ComparisonofresultspresentedinTable1of[
4
](CC)andcalculationswithAI(AI)andAY(AY).
aTheauthorsfoundasoftwareerrorinAI,thisparticularstudyhasnotbeenvalidatedtoAI.InafutureupdateofAIthesoftwareerrorwillbesolved.
Fig.1.Hypotheticalexampleof4expertsassessing10seedvariables.
Table3
StatisticalaccuracyandInformativenesscomputedwithAYandCCforthehypotheticalexamplepresentedin
Fig.
1
assumingexpertselicited10th,50thand90thpercentilesoftheiruncertaintydistribution.
ExpertID
Calibration
Calibration
Information
Information
(CC)
(AY)
(CC)
(AY)
ExpertA
5.529E?10
5.530E?10
1.371
1.371
ExpertB
5.529E?10
5.530E?10
0.571
0.571
ExpertC
0.371
0.371
0.039
0.039
ExpertD
0.526
0.526
0.629
0.629
Global
0.526
0.526
0.431
0.431
(non-opt.)
Impact
TheadvantagesofAI,discussedin[
2
],withrespecttoCCareinheritedbyAY.AnumberoflimitationsofAIwerediscussedinthesupplementof[
2
].BesidesthefullopensourcecharacterusingPythonasaprogramminglanguage,twootheradvantageswereimplementedincomparisonwithCCand/orAI.Theseareelaboratedfurthernext.
Userdefinedquantiles
From
Table
2
itmaybeobservedthatAYpresentsgoodagree-mentwiththe11studiesreportedin[
4
]where5quantiles(5th,25th50th,75thand95th)wereusedtoelicitexpertjudgments,hencewedonotelaboratefurtheronthisissue.
Asstatedearlier,AYprovidestheoptionofuserdefinedquan-tiles.CCallowsfortheuseof3,4or5userdefinedquantiles.
Fig.
1
presentsahypotheticalexampleof4experts:A,BCandD,assessing10calibrationorseedvariables.Therealization(R)isalsoshown.
Intuitively,thereadermayalreadyappreciatethatexpertAwillbeinformativebutwithlowSA.ExpertBwillbelessinfor-mativeandalsopresentlowSA.TheSAforCandDwillbeequal,however,DwillbemoreinformativethanC.
Table
3
presentsacomparisonofthecalculationsofSAandinformativenessbe-tweenAYandCCassumingexpertselicited10th,50thand90thpercentilesoftheiruncertaintydistribution.Thereadermayap-preciatethattheagreementbetweenthecalculationsperformedbyCCandAYisalmostexact.
BecausethesourcecodeofAYisavailableandextendedwithrespecttoCC,practitionersmayusemorethat3,4or5userdefinedquantilestoelicitexpertjudgments.Thesamehypothet-icalexamplewithfourexpertsasin
Table
3
isusedbutwithexpertsassessing7quantiles(10th,25th,35th,50th,65th,75th
Table4
StatisticalaccuracyandInformativenesscomputedwithAYwith7quantilesforthehypotheticalexamplepresentedinSection
4.1
assumingexpertselicited10th,25th,35th50th,65th,75thand90thpercentilesoftheiruncertaintydistribution.
ExpertID
Calibrationscore
Informationscore
Un-normalizedweights
Normalizedweights
ExpertA
8.542E?08
1.3738
1.173E?07
9.403E?07
ExpertB
8.542E?08
0.5710
4.877E?08
3.908E?07
ExpertC
0.0041
0.0393
0.0002
0.0013
ExpertD
0.1004
0.6302
0.0633
0.5069
Global
0.1004
0.6114
0.0614
0.4918
(non-opt.)
and90th)ispresentedin
Table
4
(intermediateassessmentshavebeenobtainedbyinterpolatinglinearlytheestimatessummarizedin
Fig.
1
).
ThoughthisoptionisavailableinAY,itisuncleartotheauthorsitsapplicabilityinpracticesincethecomplexityofelic-itingexpertjudgmentsgrowssignificantlywiththenumberofquantilestobeelicitedfromexperts.Itisalsouncleartotheauthorsifnostudyconsideredtheelicitationofmorethan5quantilesbecausethisfeaturewasnotavailableinanysoftwareimplementation.
Missingitemsforsomeexperts
In[
6
]twopanelsof9expertsweregatheredinordertoassessuncertaintyovereconomicgrowthandoilpricesforMexicoin2020and2030.Inthepanelcorrespondingtointernationalgasandoilprices,expertAdidnotanswer10of26calibrationvariables.NoanswerforexpertDwasrecordedfor5calibra-tionvariables.Similarly,noanswerto1calibrationvariablewasobservedforexpertG.TheresultsofcalculationsobtainedwithmissingitemsforbothAYandCCarepresentedin
Table
5
.Similarlyasin
Table
3
,theagreementbetweenthecalculationsobtainedwithCCandAYisalmostexact.
Conclusions
TheMATLABtoolboxnamedAIforcombiningexpertjudg-mentsapplyingCooke’sclassicalmodelforstructuredexpertjudgmenthasbeenextended.ThenewsoftwareiscalledAN-DURYL.ThemainpurposefordevelopingthesetoolboxesistocreateopensourcesolutionsthatcanbeusedbypractitionersandresearcherswhoareinterestedinapplyingordevelopingfurtherCooke’smethod.IncomparisonwithAIand/orCC,AYpresentsthefollowingnewfeatures:
AYhasinheritedalladvantagesofAIdiscussedin[
2
].Ad-ditionally,AYisfullyopensourceandallowsforuserdefinedquantiles(see
4.1
)andmissingitems(see
4.2
).
ThesoftwaretoolpresentedinthispapervalidatesCooke’sclassicalmodelsuccessfullywitharangeofstudiespresentedin[
4
].DespitethelimitationsofthecurrentversionofAY,itistotheauthorsbeliefthatsimilarlyasAIthedevelopedtoolboxwillbevaluabletothosewhoareinterestedindevelopingandfurtherapplyingthemethod.ItistheambitionoftheauthorstoextendAIandAYwithmorefeaturesthanthosecurrentlyavailableinCCandwiththemorerecenttechniquesofelicitationofmultivariatedependence[
7
].
Declarationofcompetinginterest
Wewishtoconfirmthattherearenoknownconflictsofinter-estassociatedwiththispublicationandtherehasbeennosignif-icantfinancialsupportforthisworkthatcouldhaveinfluenceditsoutcome.
Table5
ComparisonofcalculationsfromAYandCCfortheexpertpanelpresentedin[
6
].
ExpertID
Calibration(CC)
Calibration(AY)
Information(CC)
Information(AY)
Information(CC)
Information(AY)
ExpertA
1.634E?7
1.635E?7
1.347
1.347
1.235
1.235
ExpertD
0.07205
0.07209
1.045
1.045
1.004
1.004
ExpertG
0.0004775
0.0004774
1.075
1.0745
1.262
1.262
Global
0.1512
0.1512
0.8549
0.8549
0.8
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國鎳鋅電池市場運(yùn)行狀況及發(fā)展前景分析報(bào)告
- 2025-2030年中國遮陽蓬市場運(yùn)行動態(tài)及投資戰(zhàn)略研究報(bào)告
- 2025江蘇省建筑安全員A證考試題庫
- 2025-2030年中國被褥行業(yè)市場運(yùn)行狀況及發(fā)展趨勢分析報(bào)告
- 2025-2030年中國花露水行業(yè)運(yùn)行狀況與投資戰(zhàn)略研究報(bào)告
- 2025-2030年中國腮紅(胭脂)行業(yè)發(fā)展趨勢與十三五規(guī)劃分析報(bào)告
- 2025-2030年中國粗糧飲料產(chǎn)業(yè)需求狀況及發(fā)展策略分析報(bào)告
- 2025-2030年中國稀土拋光粉市場發(fā)展趨勢規(guī)劃研究報(bào)告
- 2025-2030年中國真空鍍膜機(jī)市場運(yùn)行現(xiàn)狀及投資規(guī)劃研究報(bào)告
- 2025-2030年中國男士香水行業(yè)運(yùn)行態(tài)勢及發(fā)展前景分析報(bào)告
- 電網(wǎng)工程設(shè)備材料信息參考價(2024年第四季度)
- PDCA項(xiàng)目降低非計(jì)劃性拔管發(fā)生率持續(xù)改進(jìn)
- 質(zhì)量問題檢出獎勵申請表模板
- 中職學(xué)生日常行為規(guī)范主題班會講稿
- 組織行為學(xué)13-組織文化
- 供應(yīng)鏈管理課件第5章供應(yīng)鏈合作伙伴選擇與評價
- 餐飲店面投資預(yù)算(900平方米)
- 預(yù)應(yīng)力工程施工質(zhì)量驗(yàn)收標(biāo)準(zhǔn)
- 旅游資源規(guī)劃與開發(fā)實(shí)訓(xùn)指導(dǎo)書
- 立體幾何專題:距離和角
- DBJ-T01-43-2003_(北京)通用家庭居室裝飾工程質(zhì)量驗(yàn)收標(biāo)準(zhǔn)
評論
0/150
提交評論