版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
新疆烏魯木齊市沙依巴克區(qū)重點中學2023-2024學年中考數(shù)學全真模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,那么小巷的寬度為()A.0.7米 B.1.5米 C.2.2米 D.2.4米2.如圖,已知?ABCD中,E是邊AD的中點,BE交對角線AC于點F,那么S△AFE:S四邊形FCDE為()A.1:3 B.1:4 C.1:5 D.1:63.從標號分別為1,2,3,4,5的5張卡片中隨機抽取1張,下列事件中不可能事件是()A.標號是2 B.標號小于6 C.標號為6 D.標號為偶數(shù)4.如圖1,在△ABC中,AB=BC,AC=m,D,E分別是AB,BC邊的中點,點P為AC邊上的一個動點,連接PD,PB,PE.設AP=x,圖1中某條線段長為y,若表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則這條線段可能是()A.PD B.PB C.PE D.PC5.已知點為某封閉圖形邊界上一定點,動點從點出發(fā),沿其邊界順時針勻速運動一周.設點運動的時間為,線段的長為.表示與的函數(shù)關(guān)系的圖象大致如右圖所示,則該封閉圖形可能是()A. B. C. D.6.某人想沿著梯子爬上高4米的房頂,梯子的傾斜角(梯子與地面的夾角)不能大于60°A.8米 B.83米 C.8337.如圖所示,△ABC為等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG邊長也為2,且AC與DE在同一直線上,△ABC從C點與D點重合開始,沿直線DE向右平移,直到點A與點E重合為止,設CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是()A. B.C. D.8.直線y=3x+1不經(jīng)過的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如圖,平行四邊形ABCD中,E為BC邊上一點,以AE為邊作正方形AEFG,若,,則的度數(shù)是A. B. C. D.10.尺規(guī)作圖要求:Ⅰ、過直線外一點作這條直線的垂線;Ⅱ、作線段的垂直平分線;Ⅲ、過直線上一點作這條直線的垂線;Ⅳ、作角的平分線.如圖是按上述要求排亂順序的尺規(guī)作圖:則正確的配對是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ二、填空題(共7小題,每小題3分,滿分21分)11.觀察下列圖形,若第1個圖形中陰影部分的面積為1,第2個圖形中陰影部分的面積為,第3個圖形中陰影部分的面積為,第4個圖形中陰影部分的面積為,…則第n個圖形中陰影部分的面積為_____.(用字母n表示)12.如圖,邊長為的正方形紙片剪出一個邊長為m的正方形之后,剩余部分可剪拼成一個矩形,若拼成的矩形一邊長為4,則另一邊長為13.已知一組數(shù)據(jù)-3,x,-2,3,1,6的眾數(shù)為3,則這組數(shù)據(jù)的中位數(shù)為______.14.如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數(shù)y=的圖象上.若點B在反比例函數(shù)y=的圖象上,則k的值為_____.15.如圖,A、D是⊙O上的兩個點,BC是直徑,若∠D=40°,則∠OAC=____度.16.某校為了了解學生雙休日參加社會實踐活動的情況,隨機抽取了100名學生進行調(diào)查,并繪成如圖所示的頻數(shù)分布直方圖.已知該校共有1000名學生,據(jù)此估計,該校雙休日參加社會實踐活動時間在2~2.5小時之間的學生數(shù)大約是全體學生數(shù)的________(填百分數(shù)).17.如圖,點A,B,C在⊙O上,四邊形OABC是平行四邊形,OD⊥AB于點E,交⊙O于點D,則∠BAD=_______°.三、解答題(共7小題,滿分69分)18.(10分)下表給出A、B、C三種上寬帶網(wǎng)的收費方式:收費方式月使用費/元包時上網(wǎng)時間/h超時費/(元/min)A30250.05B50500.05C120不限時設上網(wǎng)時間為t小時.(I)根據(jù)題意,填寫下表:月費/元上網(wǎng)時間/h超時費/(元)總費用/(元)方式A3040方式B50100(II)設選擇方式A方案的費用為y1元,選擇方式B方案的費用為y2元,分別寫出y1、y2與t的數(shù)量關(guān)系式;(III)當75<t<100時,你認為選用A、B、C哪種計費方式省錢(直接寫出結(jié)果即可)?19.(5分)如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABC交AE于點M,經(jīng)過B、M兩點的⊙O交BC于點G,交AB于點F,F(xiàn)B恰為⊙O的直徑.(1)判斷AE與⊙O的位置關(guān)系,并說明理由;(2)若BC=6,AC=4CE時,求⊙O的半徑.20.(8分)如圖,在△ABC中,AB=AC,∠BAC=120°,EF為AB的垂直平分線,交BC于點F,交AB于點E.求證:FC=2BF.21.(10分)如圖,在平面直角坐標系中有三點(1,2),(3,1),(-2,-1),其中有兩點同時在反比例函數(shù)的圖象上,將這兩點分別記為A,B,另一點記為C,(1)求出的值;(2)求直線AB對應的一次函數(shù)的表達式;(3)設點C關(guān)于直線AB的對稱點為D,P是軸上的一個動點,直接寫出PC+PD的最小值(不必說明理由).22.(10分)某校想了解學生每周的課外閱讀時間情況,隨機調(diào)查了部分學生,對學生每周的課外閱讀時間x(單位:小時)進行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計圖:根據(jù)圖中提供的信息,解答下列問題:(1)補全頻數(shù)分布直方圖(2)求扇形統(tǒng)計圖中m的值和E組對應的圓心角度數(shù)(3)請估計該校3000名學生中每周的課外閱讀時間不小于6小時的人數(shù)23.(12分)如圖,在梯形ABCD中,AD∥BC,對角線AC、BD交于點M,點E在邊BC上,且∠DAE=∠DCB,聯(lián)結(jié)AE,AE與BD交于點F.(1)求證:;(2)連接DE,如果BF=3FM,求證:四邊形ABED是平行四邊形.24.(14分)如圖,四邊形ABCD的頂點在⊙O上,BD是⊙O的直徑,延長CD、BA交于點E,連接AC、BD交于點F,作AH⊥CE,垂足為點H,已知∠ADE=∠ACB.(1)求證:AH是⊙O的切線;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若,求證:CD=DH.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
在直角三角形中利用勾股定理計算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選C.【點睛】本題考查勾股定理的運用,利用梯子長度不變找到斜邊是關(guān)鍵.2、C【解析】
根據(jù)AE∥BC,E為AD中點,找到AF與FC的比,則可知△AEF面積與△FCE面積的比,同時因為△DEC面積=△AEC面積,則可知四邊形FCDE面積與△AEF面積之間的關(guān)系.【詳解】解:連接CE,∵AE∥BC,E為AD中點,
∴.
∴△FEC面積是△AEF面積的2倍.
設△AEF面積為x,則△AEC面積為3x,
∵E為AD中點,
∴△DEC面積=△AEC面積=3x.
∴四邊形FCDE面積為1x,
所以S△AFE:S四邊形FCDE為1:1.
故選:C.【點睛】本題考查相似三角形的判定和性質(zhì)、平行四邊形的性質(zhì),解題關(guān)鍵是通過線段的比得到三角形面積的關(guān)系.3、C【解析】
利用隨機事件以及必然事件和不可能事件的定義依次分析即可解答.【詳解】選項A、標號是2是隨機事件;選項B、該卡標號小于6是必然事件;選項C、標號為6是不可能事件;選項D、該卡標號是偶數(shù)是隨機事件;故選C.【點睛】本題考查了隨機事件以及必然事件和不可能事件的定義,正確把握相關(guān)定義是解題關(guān)鍵.4、C【解析】觀察可得,點P在線段AC上由A到C的運動中,線段PE逐漸變短,當EP⊥AC時,PE最短,過垂直這個點后,PE又逐漸變長,當AP=m時,點P停止運動,符合圖像的只有線段PE,故選C.點睛:本題考查了動點問題的函數(shù)圖象,對于此類問題來說是典型的數(shù)形結(jié)合,圖象應用信息廣泛,通過看圖獲取信息,不僅可以解決生活中的實際問題,還可以提高分析問題、解決問題的能力.用圖象解決問題時,要理清圖象的含義即會識圖.5、A【解析】
解:分析題中所給函數(shù)圖像,段,隨的增大而增大,長度與點的運動時間成正比.段,逐漸減小,到達最小值時又逐漸增大,排除、選項,段,逐漸減小直至為,排除選項.故選.【點睛】本題考查了動點問題的函數(shù)圖象,函數(shù)圖象是典型的數(shù)形結(jié)合,圖象應用信息廣泛,通過看圖獲取信息,不僅可以解決生活中的實際問題,還可以提高分析問題、解決問題的能力.用圖象解決問題時,要理清圖象的含義即會識圖.6、C【解析】此題考查的是解直角三角形如圖:AC=4,AC⊥BC,∵梯子的傾斜角(梯子與地面的夾角)不能>60°.∴∠ABC≤60°,最大角為60°.即梯子的長至少為83故選C.7、A【解析】
此題可分為兩段求解,即C從D點運動到E點和A從D點運動到E點,列出面積隨動點變化的函數(shù)關(guān)系式即可.【詳解】解:設CD的長為與正方形DEFG重合部分圖中陰影部分的面積為當C從D點運動到E點時,即時,.當A從D點運動到E點時,即時,,與x之間的函數(shù)關(guān)系由函數(shù)關(guān)系式可看出A中的函數(shù)圖象與所求的分段函數(shù)對應.故選A.【點睛】本題考查的動點變化過程中面積的變化關(guān)系,重點是列出函數(shù)關(guān)系式,但需注意自變量的取值范圍.8、D【解析】
利用兩點法可畫出函數(shù)圖象,則可求得答案.【詳解】在y=3x+1中,令y=0可得x=-,令x=0可得y=1,∴直線與x軸交于點(-,0),與y軸交于點(0,1),其函數(shù)圖象如圖所示,∴函數(shù)圖象不過第四象限,故選:D.【點睛】本題主要考查一次函數(shù)的性質(zhì),正確畫出函數(shù)圖象是解題的關(guān)鍵.9、A【解析】分析:首先求出∠AEB,再利用三角形內(nèi)角和定理求出∠B,最后利用平行四邊形的性質(zhì)得∠D=∠B即可解決問題.詳解:∵四邊形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四邊形ABCD是平行四邊形,∴∠D=∠B=65°故選A.點睛:本題考查正方形的性質(zhì)、平行四邊形的性質(zhì)、三角形內(nèi)角和定理等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,學會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.10、D【解析】【分析】分別利用過直線外一點作這條直線的垂線作法以及線段垂直平分線的作法和過直線上一點作這條直線的垂線、角平分線的作法分別得出符合題意的答案.【詳解】Ⅰ、過直線外一點作這條直線的垂線,觀察可知圖②符合;Ⅱ、作線段的垂直平分線,觀察可知圖③符合;Ⅲ、過直線上一點作這條直線的垂線,觀察可知圖④符合;Ⅳ、作角的平分線,觀察可知圖①符合,所以正確的配對是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故選D.【點睛】本題主要考查了基本作圖,正確掌握基本作圖方法是解題關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、n﹣1(n為整數(shù))【解析】試題分析:觀察圖形可得,第1個圖形中陰影部分的面積=()0=1;第2個圖形中陰影部分的面積=()1=;第3個圖形中陰影部分的面積=()2=;第4個圖形中陰影部分的面積=()3=;…根據(jù)此規(guī)律可得第n個圖形中陰影部分的面積=()n-1(n為整數(shù))?考點:圖形規(guī)律探究題.12、【解析】
因為大正方形邊長為,小正方形邊長為m,所以剩余的兩個直角梯形的上底為m,下底為,所以矩形的另一邊為梯形上、下底的和:+m=.13、【解析】分析:找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個.
詳解:∵-3,x,-1,3,1,6的眾數(shù)是3,
∴x=3,
先對這組數(shù)據(jù)按從小到大的順序重新排序-3、-1、1、3、3、6位于最中間的數(shù)是1,3,
∴這組數(shù)的中位數(shù)是=1.
故答案為:1.點睛:本題屬于基礎題,考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).14、﹣2【解析】
要求函數(shù)的解析式只要求出B點的坐標就可以,過點A,B作AC⊥x軸,BD⊥x軸,分別于C,D.根據(jù)條件得到△ACO∽△ODB,得到:=1,然后用待定系數(shù)法即可.【詳解】過點A,B作AC⊥x軸,BD⊥x軸,分別于C,D.設點A的坐標是(m,n),則AC=n,OC=m.∵∠AOB=90°,∴∠AOC+∠BOD=90°.∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC.∵∠BDO=∠ACO=90°,∴△BDO∽△OCA.∴,∵OB=1OA,∴BD=1m,OD=1n.因為點A在反比例函數(shù)y=的圖象上,∴mn=1.∵點B在反比例函數(shù)y=的圖象上,∴B點的坐標是(-1n,1m).∴k=-1n?1m=-4mn=-2.故答案為-2.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,相似三角形的判定和性質(zhì),利用相似三角形的性質(zhì)求得點B的坐標(用含n的式子表示)是解題的關(guān)鍵.15、50【解析】
根據(jù)BC是直徑得出∠B=∠D=40°,∠BAC=90°,再根據(jù)半徑相等所對應的角相等求出∠BAO,在直角三角形BAC中即可求出∠OAC【詳解】∵BC是直徑,∠D=40°,∴∠B=∠D=40°,∠BAC=90°.∵OA=OB,∴∠BAO=∠B=40°,∴∠OAC=∠BAC﹣∠BAO=90°﹣40°=50°.故答案為:50【點睛】本題考查了圓的基本概念、角的概念及其計算等腰三角形以及三角形的基本概念,熟悉掌握概念是解題的關(guān)鍵16、.【解析】
用被抽查的100名學生中參加社會實踐活動時間在2~2.5小時之間的學生除以抽查的學生總?cè)藬?shù),即可得解.【詳解】由頻數(shù)分布直方圖知,2~2.5小時的人數(shù)為100﹣(8+24+30+10)=28,則該校雙休日參加社會實踐活動時間在2~2.5小時之間的學生數(shù)大約是全體學生數(shù)的百分比為100%=28%.故答案為:28%.【點睛】本題考查了頻數(shù)分布直方圖以及用樣本估計總體,利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.一般來說,用樣本去估計總體時,樣本越具有代表性、容量越大,這時對總體的估計也就越精確.17、15【解析】
根據(jù)圓的基本性質(zhì)得出四邊形OABC為菱形,∠AOB=60°,然后根據(jù)同弧所對的圓心角與圓周角之間的關(guān)系得出答案.【詳解】解:∵OABC為平行四邊形,OA=OC=OB,∴四邊形OABC為菱形,∠AOB=60°,∵OD⊥AB,∴∠BOD=30°,∴∠BAD=30°÷2=15°.故答案為:15.【點睛】本題主要考查的是圓的基本性質(zhì)問題,屬于基礎題型.根據(jù)題意得出四邊形OABC為菱形是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(I)見解析;(II)見解析;(III)見解析.【解析】
(I)根據(jù)兩種方式的收費標準分別計算,填表即可;(II)根據(jù)表中給出A,B兩種上寬帶網(wǎng)的收費方式,分別寫出y1、y2與t的數(shù)量關(guān)系式即可;(III)計算出三種方式在此取值范圍的收費情況,然后比較即可得出答案.【詳解】(I)當t=40h時,方式A超時費:0.05×60(40﹣25)=45,總費用:30+45=75,當t=100h時,方式B超時費:0.05×60(100﹣50)=150,總費用:50+150=200,填表如下:月費/元上網(wǎng)時間/h超時費/(元)總費用/(元)方式A30404575方式B50100150200(II)當0≤t≤25時,y1=30,當t>25時,y1=30+0.05×60(t﹣25)=3t﹣45,所以y1=;當0≤t≤50時,y2=50,當t>50時,y2=50+0.05×60(t﹣50)=3t﹣100,所以y2=;(III)當75<t<100時,選用C種計費方式省錢.理由如下:當75<t<100時,y1=3t﹣45,y2=3t﹣100,y3=120,當t=75時,y1=180,y2=125,y3=120,所以當75<t<100時,選用C種計費方式省錢.【點睛】本題考查了一次函數(shù)的應用,解答時理解三種上寬帶網(wǎng)的收費標準進而求出函數(shù)的解析式是解題的關(guān)鍵.19、(1)AE與⊙O相切.理由見解析.(2)2.1【解析】
(1)連接OM,則OM=OB,利用平行的判定和性質(zhì)得到OM∥BC,∠AMO=∠AEB,再利用等腰三角形的性質(zhì)和切線的判定即可得證;(2)設⊙O的半徑為r,則AO=12﹣r,利用等腰三角形的性質(zhì)和解直角三角形的有關(guān)知識得到AB=12,易證△AOM∽△ABE,根據(jù)相似三角形的性質(zhì)即可求解.【詳解】解:(1)AE與⊙O相切.理由如下:連接OM,則OM=OB,∴∠OMB=∠OBM,∵BM平分∠ABC,∴∠OBM=∠EBM,∴∠OMB=∠EBM,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分線,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∴AE與⊙O相切;(2)在△ABC中,AB=AC,AE是角平分線,∴BE=BC,∠ABC=∠C,∵BC=6,cosC=,∴BE=3,cos∠ABC=,在△ABE中,∠AEB=90°,∴AB===12,設⊙O的半徑為r,則AO=12﹣r,∵OM∥BC,∴△AOM∽△ABE,∴,∴=,解得:r=2.1,∴⊙O的半徑為2.1.20、見解析【解析】
連接AF,結(jié)合條件可得到∠B=∠C=30°,∠AFC=60°,再利用含30°直角三角形的性質(zhì)可得到AF=BF=CF,可證得結(jié)論.【詳解】證明:連接AF,∵EF為AB的垂直平分線,∴AF=BF,又AB=AC,∠BAC=120°,∴∠B=∠C=∠BAF=30°,∴∠FAC=90°,∴AF=FC,∴FC=2BF.【點睛】本題主要考查垂直平分線的性質(zhì)及等腰三角形的性質(zhì),掌握線段垂直平分線上的點到線段兩端點的距離相等是解題的關(guān)鍵.21、(2)2;(2)y=x+2;(3).【解析】
(2)確定A、B、C的坐標即可解決問題;(2)理由待定系數(shù)法即可解決問題;(3)作D關(guān)于x軸的對稱點D′(0,-4),連接CD′交x軸于P,此時PC+PD的值最小,最小值=CD′的長.【詳解】解:(2)∵反比例函數(shù)y=的圖象上的點橫坐標與縱坐標的積相同,∴A(2,2),B(-2,-2),C(3,2)∴k=2.(2)設直線AB的解析式為y=mx+n,則有,解得,∴直線AB的解析式為y=x+2.(3)∵C、D關(guān)于直線AB對稱,∴D(0,4)作D關(guān)于x軸的對稱點D′(0,-4),連接CD′交x軸于P,此時PC+PD的值最小,最小值=CD′=.【點睛】本題考查反比例函數(shù)圖象上的點的特征,一次函數(shù)的性質(zhì)、反比例函數(shù)的性質(zhì)、軸對稱最短問題等知識,解題的關(guān)鍵是熟練掌握待定系數(shù)法確定函數(shù)解析式,學會利用軸對稱解決最短問題.22、略;m=40,1.4°;870人.【解析】試題分析:根據(jù)A組的人數(shù)和比例得出總?cè)藬?shù),然后得出D組的人數(shù),補全條形統(tǒng)計圖;根據(jù)C組的人數(shù)和總?cè)藬?shù)得出m的值,根據(jù)E組的人數(shù)求出E的百分比,然后計算圓心角的度數(shù);根據(jù)D組合E組的百分數(shù)總和,估算出該校的每周的課外閱讀時間不小于6小時的人數(shù).試題解析:(1)補全頻數(shù)分布直方圖,如圖所示.(2)∵10÷10%=100∴40÷100=40%∴m=40∵4÷100=4%∴“E”組對應的圓心角度數(shù)=4%×360°=1.4°(3)3000×(25%+4%)=870(人).答:估計該校學生中每周的課外閱讀時間不小于6小時的人數(shù)是870人.考點:統(tǒng)計圖.23、(1)證明見解析;(2)證明見解析.【解析】分析:(1)由AD∥BC可得出∠DAE=∠AEB,結(jié)合∠DCB=∠DAE可得出∠DCB=∠AEB,進而可得出AE∥DC、△AMF∽△CMD,根據(jù)相似三角形的性質(zhì)可得出=,根據(jù)AD∥BC,可得出△AMD∽△CMB,根據(jù)相似三角形的性質(zhì)可得出=,進而可得出=,即MD2=MF?MB;(2)設FM=a,則BF=3a,BM=4a.由(1)的結(jié)論可求出MD的長度,代入DF=DM+MF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 英語編制課程設計小學
- 石灰法煙氣脫硫課程設計
- 英語興趣班音標課程設計
- 擠壓模課程設計
- 人教部編版七年級歷史下冊全冊教案
- 橢球形塑料模課程設計
- 自制小樂器托班課程設計
- 幼兒園遠足課程設計
- 電力行業(yè)前臺服務總結(jié)
- 化妝品行業(yè)美妝培訓總結(jié)
- 項目貸款保證函書
- 新編英語語法教程第6講.課件
- 月下獨酌(其一)李白
- 七年級上冊數(shù)學壓軸題幾何試卷(帶答案)
- 網(wǎng)絡安全保密教育知識普及培訓課件
- 小學語文-部編版四年級語文上冊第六單元習作:記一次游戲教學設計學情分析教材分析課后反思
- 面向5G網(wǎng)絡建設的站點供電技術(shù)應用與發(fā)展
- 裝飾公司與項目經(jīng)理合作協(xié)議
- 接待上級領導工作總結(jié)
- 《新時代高校勞動教育理論與實踐教程》教案 第9課 強化勞動安全意識
- 小學數(shù)學項目化教學這:基于教學評一體化的大單元整體設計《測量》
評論
0/150
提交評論