




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024/4/71三.本章的課程學(xué)習(xí)目標(biāo)ABC旋轉(zhuǎn)
①了解圖形的旋轉(zhuǎn),理解對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等、對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心連線所成的角彼此相等的性質(zhì);②會(huì)識(shí)別中心對(duì)稱圖形.
①能按要求作出簡(jiǎn)單平面圖形旋轉(zhuǎn)后的圖形,②能依據(jù)旋轉(zhuǎn)前、后的圖形,指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角.
①
能利用旋轉(zhuǎn)進(jìn)行圖案設(shè)計(jì);②能運(yùn)用旋轉(zhuǎn)的知識(shí)解決簡(jiǎn)單問題.2024/4/72★研究對(duì)象的選擇:方案二:點(diǎn)——線段——三角形等2.關(guān)于旋轉(zhuǎn)的性質(zhì)的探究:第一課時(shí):建構(gòu)概念,探究性質(zhì).2024/4/73
舉例:1.如圖,△ABC為等邊三角形,D是△ABC內(nèi)一點(diǎn),若將△ABD經(jīng)過旋轉(zhuǎn)后到△ACP位置,則旋轉(zhuǎn)中心是___,旋轉(zhuǎn)角等于___度,△ADP是___三角形.3.關(guān)于旋轉(zhuǎn)的概念和性質(zhì)的簡(jiǎn)單應(yīng)用:第一課時(shí):建構(gòu)概念,探究性質(zhì).2.如圖,正方形ABCD中,E是AD上一點(diǎn),將△CDE逆時(shí)針旋轉(zhuǎn)后得到△CBM.則旋轉(zhuǎn)中心是___,△CDE旋轉(zhuǎn)了___度,△CEM是___三角形.2024/4/74
舉例:3.如圖所示,把一個(gè)直角三角尺ACB繞著30°角的頂點(diǎn)B順時(shí)針旋轉(zhuǎn),使得點(diǎn)A落在CB的延長(zhǎng)線上的點(diǎn)E處,則∠BDC的度數(shù)為
.3.關(guān)于旋轉(zhuǎn)的概念和性質(zhì)的簡(jiǎn)單應(yīng)用:第一課時(shí):建構(gòu)概念,探究性質(zhì).2024/4/75
利用旋轉(zhuǎn)的定義和性質(zhì)作圖.第二課時(shí):簡(jiǎn)單作圖,加深理解.★點(diǎn)的旋轉(zhuǎn):
舉例:畫出點(diǎn)P繞點(diǎn)O順(或逆)時(shí)針旋轉(zhuǎn)30°(或45°、
60°)后的對(duì)應(yīng)點(diǎn).2024/4/76
利用旋轉(zhuǎn)的定義和性質(zhì)作圖.第二課時(shí):簡(jiǎn)單作圖,加深理解.★線段的旋轉(zhuǎn):舉例:畫出線段AB繞點(diǎn)A(或點(diǎn)B、點(diǎn)O)順(或逆)時(shí)針旋轉(zhuǎn)30°
(或45°、
60°)后的圖形.2024/4/77
利用旋轉(zhuǎn)的定義和性質(zhì)作圖.第二課時(shí):簡(jiǎn)單作圖,加深理解.★三角形的旋轉(zhuǎn):舉例:畫出△ABC繞點(diǎn)C逆(或順)時(shí)針旋轉(zhuǎn)90°(或180°)后的圖形.2024/4/78
利用旋轉(zhuǎn)的定義和性質(zhì)作圖.第二課時(shí):簡(jiǎn)單作圖,加深理解.★其它圖形的旋轉(zhuǎn):
圖形的旋轉(zhuǎn)點(diǎn)的旋轉(zhuǎn)轉(zhuǎn)化2024/4/79
利用旋轉(zhuǎn)的定義和性質(zhì)作圖.第二課時(shí):簡(jiǎn)單作圖,加深理解.2024/4/710
利用旋轉(zhuǎn)的定義和性質(zhì)作圖.第二課時(shí):簡(jiǎn)單作圖,加深理解.FDCBAE圖1G2G1P1HP22024/4/711
利用旋轉(zhuǎn)的定義和性質(zhì)作圖.第二課時(shí):簡(jiǎn)單作圖,加深理解.2024/4/712--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.3.怎么旋轉(zhuǎn)?確定旋轉(zhuǎn)中心、旋轉(zhuǎn)方向、旋轉(zhuǎn)角度.
第三、四課時(shí):利用旋轉(zhuǎn)變換解決幾何問題.4.旋轉(zhuǎn)之后怎么辦?利用旋轉(zhuǎn)的性質(zhì).90°等腰直角三角形60°等邊三角形2024/4/713第三、四課時(shí):利用旋轉(zhuǎn)變換解決幾何問題.--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.★對(duì)基本圖形的認(rèn)識(shí):2024/4/714第三、四課時(shí):利用旋轉(zhuǎn)變換解決幾何問題.--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.★以等邊三角形為背景的旋轉(zhuǎn)問題舉例1:如圖,△BCM中,∠BMC=120°,以BC為邊向三角形外作等邊△ABC,把△ABM繞著點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)60°到△CAN的位置.若BM=2,MC=3.求:①∠AMB的度數(shù);②求AM的長(zhǎng).2024/4/715第三、四課時(shí):利用旋轉(zhuǎn)變換解決幾何問題.--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.★以等邊三角形為背景的旋轉(zhuǎn)問題舉例2:如圖,已知△ABC為等邊三角形,M為三角形外任意一點(diǎn),證明:AM≤BM+CM.2024/4/716第三、四課時(shí):利用旋轉(zhuǎn)變換解決幾何問題.--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.★以等邊三角形為背景的旋轉(zhuǎn)問題舉例3:已知:如圖,P為等邊三角形ABC內(nèi)一點(diǎn),PA=3,PB=4,PC=5,求∠ABP的度數(shù).2024/4/717第三、四課時(shí):利用旋轉(zhuǎn)變換解決幾何問題.--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.★以等邊三角形為背景的旋轉(zhuǎn)問題舉例4:2024/4/718第三、四課時(shí):利用旋轉(zhuǎn)變換解決幾何問題.--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.★以等邊三角形為背景的旋轉(zhuǎn)問題舉例5:舉例1:已知,△ABC中,AD⊥BC于D,
且AD=BD,O是AD上一點(diǎn),OD=CD,連結(jié)BO并延長(zhǎng)交AC于E.求證:AC=OB--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.★以等腰直角三角形或正方形為背景的旋轉(zhuǎn)問題第三、四課時(shí):利用旋轉(zhuǎn)變換解決幾何問題.舉例2:如圖,在邊長(zhǎng)為1的正方形ABCD中,∠EDF=45°,求△DEF的周長(zhǎng).--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.★以等腰直角三角形或正方形為背景的旋轉(zhuǎn)問題第三、四課時(shí):利用旋轉(zhuǎn)變換解決幾何問題.舉例3:如圖,D為等腰直角三角形ABC的斜邊BC上一點(diǎn),求證:
--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.★以等腰直角三角形或正方形為背景的旋轉(zhuǎn)問題第三、四課時(shí):利用旋轉(zhuǎn)變換解決幾何問題.第三課時(shí):發(fā)現(xiàn)旋轉(zhuǎn),提升認(rèn)識(shí).--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.★以等腰直角三角形或正方形為背景的旋轉(zhuǎn)問題第三課時(shí):發(fā)現(xiàn)旋轉(zhuǎn),提升認(rèn)識(shí).--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.★以等腰直角三角形或正方形為背景的旋轉(zhuǎn)問題舉例4:如圖,正方形ABCD和正方形OEFG的邊長(zhǎng)均為4,O是正方形ABCD的旋轉(zhuǎn)對(duì)稱中心,求圖中陰影部分的面積.
2024/4/724舉例5:如圖甲,在△ABC中,∠ACB為銳角.點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.解答下列問題:(1)如果AB=AC,∠BAC=90o.①當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖乙,線段CF、BD之間的位置關(guān)系為
,數(shù)量關(guān)系為
.②當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖丙,①中的結(jié)論是否仍然成立,為什么?
(2)如果AB≠AC,∠BAC≠90o,點(diǎn)D在線段BC上運(yùn)動(dòng).試探究:當(dāng)△ABC滿足一個(gè)什么條件時(shí),CF⊥BC(點(diǎn)C、F重合除外)?畫出相應(yīng)圖形,并說明理由.(畫圖不寫作法)--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.★以等腰直角三角形或正方形為背景的旋轉(zhuǎn)問題第三、四課時(shí):利用旋轉(zhuǎn)變換解決幾何問題.2024/4/725--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.★以等腰直角三角形或正方形為背景的旋轉(zhuǎn)問題第三、四課時(shí):利用旋轉(zhuǎn)變換解決幾何問題.圖甲圖乙圖丙--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.★以一般等腰三角形為背景的旋轉(zhuǎn)問題舉例1:(1)如圖①,已知在△ABC中,AB=AC,P是△ABC內(nèi)部任意一點(diǎn),將AP繞A順時(shí)針旋轉(zhuǎn)至AQ,使∠QAP=∠BAC,連接BQ、CP,求證:BQ=CP.(2)將點(diǎn)P移到等腰三角形ABC之外,(1)中的條件不變,“BQ=CP”還成立嗎?圖①圖②第三、四課時(shí):利用旋轉(zhuǎn)變換解決幾何問題.--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.★以一般等腰三角形為背景的旋轉(zhuǎn)問題舉例2:在等腰△ABC中,AB=AC,D是△ABC內(nèi)一點(diǎn),∠ADB=∠ADC,求證:∠DBC=∠DCB.第三、四課時(shí):利用旋轉(zhuǎn)變換解決幾何問題.第三課時(shí):發(fā)現(xiàn)旋轉(zhuǎn),提升認(rèn)識(shí).--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.1.當(dāng)旋轉(zhuǎn)角是60°時(shí),作一個(gè)圖形旋轉(zhuǎn)后的圖形的存在等邊三角形;當(dāng)旋轉(zhuǎn)角是90°時(shí),存在等腰直角三角形.反之,如果圖形中存在兩個(gè)等邊三角形或等腰直角三角形,可以從圖形旋轉(zhuǎn)的角度分析圖形關(guān)系.2.事實(shí)上,只要圖形中存在公共端點(diǎn)的等線段,就可能形成旋轉(zhuǎn)型問題.注意:要抓住本質(zhì),不要將其模式化.第三課時(shí):發(fā)現(xiàn)旋轉(zhuǎn),提升認(rèn)識(shí).--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.舉例:已知:如圖,正方形ABCD內(nèi)點(diǎn)P到A,B,C三點(diǎn)的距離之和的最小值為
.
求此正方形的邊長(zhǎng).2024/4/730第二課時(shí):中心對(duì)稱圖形.舉例:下列圖形中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是()A. B.C. D.識(shí)別2024/4/731第二課時(shí):中心對(duì)稱圖形.舉例:如圖是
正方形網(wǎng)格,請(qǐng)?jiān)谄渲羞x取一個(gè)白色的單位正方形并涂黑,使圖中黑色部分是一個(gè)中心對(duì)稱圖形.設(shè)計(jì)2024/4/732第三課時(shí):關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo).舉例:
已知:如圖,△ABC中,A(-2,3),B(-3,1),C(-1,2).請(qǐng)畫出△ABC關(guān)于原點(diǎn)O對(duì)稱的△A1B1C1.數(shù)形結(jié)合ABCOxy另:在這一節(jié)中也可借助直角坐標(biāo)系探究發(fā)現(xiàn)中心對(duì)稱和軸對(duì)稱之間的關(guān)系.★若兩對(duì)稱軸互相垂直,則兩次軸對(duì)稱相當(dāng)于一次中心對(duì)稱.第三課時(shí):關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo).2024/4/734第三課時(shí):關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo).
★旋轉(zhuǎn)和軸對(duì)稱的關(guān)系:將一個(gè)圖形關(guān)于兩條相交直線軸對(duì)稱兩次,則可得到原圖形關(guān)于兩直線交點(diǎn)的旋轉(zhuǎn)兩倍夾角后的圖形.2024/4/735第四課時(shí):中心對(duì)稱的應(yīng)用.--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.E主要內(nèi)容:1.構(gòu)造中心對(duì)稱解決幾何問題.對(duì)基本圖形的認(rèn)識(shí):要解決好三個(gè)問題:●為什么要構(gòu)造中心對(duì)稱?●怎么構(gòu)造?●構(gòu)造后怎么用?切忌把問題模式化,例如:倍長(zhǎng)中線法2024/4/736第四課時(shí):中心對(duì)稱的應(yīng)用.--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.舉例1:已知△ABC中,AB=5,AC=3,求BC邊上的中線AD的取值范圍.2024/4/737第四課時(shí):中心對(duì)稱的應(yīng)用.--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.舉例2:已知:如圖,RtABC中,∠ACB=90°,
D為AB中點(diǎn),DE、DF分別交AC于E,交BC于F,且DE⊥DF.求證:AE2+BF2=EF2..2024/4/738第四課時(shí):中心對(duì)稱的應(yīng)用.--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.舉例3:(1)在Rt△ABC中,∠BAC=90°,AB>AC,點(diǎn)D是BC邊中點(diǎn),過D作射線交AB于E,交CA延長(zhǎng)線于F,請(qǐng)猜想∠F等于多少度時(shí),BE=CF,并說明理由.2024/4/739第四課時(shí):中心對(duì)稱的應(yīng)用.--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.舉例3:(2)在△ABC中,如果∠BAC不是直角,而(1)中的其他條件不變,若BE=CF的結(jié)論仍然成立,請(qǐng)寫出△AEF必須滿足的條件,并加以證明.2024/4/740第四課時(shí):中心對(duì)稱的應(yīng)用.--從變換的高度分析問題;從運(yùn)動(dòng)的觀點(diǎn)看待圖形.舉例4:如圖已知Rt△ABC中,AB=AC,在Rt△ADE中,AD=DE,連結(jié)EC,取EC中點(diǎn)M,連結(jié)DM和BM,t探究線段BM和DM的數(shù)量
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國老人手機(jī)行業(yè)發(fā)展?jié)摿Ψ治黾巴顿Y方向研究報(bào)告
- 【可行性報(bào)告】2025年粘結(jié)稀土永磁材料行業(yè)項(xiàng)目可行性分析報(bào)告
- 改裝汽車項(xiàng)目可行性研究報(bào)告范文
- 加固可行性研究報(bào)告的案例分析與總結(jié)
- 中國LTCC低溫共燒陶瓷行業(yè)發(fā)展前景及投資戰(zhàn)略咨詢報(bào)告
- 2025年中國福建省建筑業(yè)行業(yè)市場(chǎng)運(yùn)行現(xiàn)狀及投資規(guī)劃建議報(bào)告
- 安全生產(chǎn)培訓(xùn)計(jì)劃內(nèi)容
- 河北省安全生產(chǎn)條例規(guī)定微小企業(yè)是指
- 養(yǎng)老機(jī)構(gòu)年度安全生產(chǎn)工作計(jì)劃
- 工作場(chǎng)所安全檢查表
- 公司員工合理化建議獎(jiǎng)勵(lì)辦法
- 25T汽車吊檢驗(yàn)報(bào)告
- 加工中心刀具庫選擇PLC控制系統(tǒng)設(shè)計(jì)
- 主域故障無法啟動(dòng),額外域提升Active Directory
- 電商平臺(tái)POP模式商家入駐合作協(xié)議書(標(biāo)準(zhǔn)版)
- 初中生物知識(shí)點(diǎn)匯總細(xì)胞
- (完整版)四年級(jí)脫式計(jì)算題(160題)
- 高考??颊Z法填空詞性轉(zhuǎn)換匯總
- 上海延安中學(xué)初一新生分班(摸底)數(shù)學(xué)模擬考試(含答案)
- AOI自動(dòng)光學(xué)檢測(cè)設(shè)備程序編寫
- 腎輸尿管結(jié)石病歷模板
評(píng)論
0/150
提交評(píng)論