遼寧省營口市大石橋市水源九一貫制學(xué)校2024年八年級下冊數(shù)學(xué)期末檢測模擬試題含解析_第1頁
遼寧省營口市大石橋市水源九一貫制學(xué)校2024年八年級下冊數(shù)學(xué)期末檢測模擬試題含解析_第2頁
遼寧省營口市大石橋市水源九一貫制學(xué)校2024年八年級下冊數(shù)學(xué)期末檢測模擬試題含解析_第3頁
遼寧省營口市大石橋市水源九一貫制學(xué)校2024年八年級下冊數(shù)學(xué)期末檢測模擬試題含解析_第4頁
遼寧省營口市大石橋市水源九一貫制學(xué)校2024年八年級下冊數(shù)學(xué)期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

遼寧省營口市大石橋市水源九一貫制學(xué)校2024年八年級下冊數(shù)學(xué)期末檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.下列事件為隨機事件的是()A.367人中至少有2人生日相同 B.打開電視,正在播廣告C.沒有水分,種子發(fā)芽 D.如果、都是實數(shù),那么2.有31位學(xué)生參加學(xué)校舉行的“最強大腦”智力游戲比賽,比賽結(jié)束后根據(jù)每個學(xué)生的最后得分計算出中位數(shù)、平均數(shù)、眾數(shù)和方差,如果去掉一個最高分和一個最低分,則一定不發(fā)生變化的是()A.中位數(shù) B.平均數(shù) C.眾數(shù) D.方差3.如圖,Rt△ABC中,∠C=90°,AB=10,BC=8,將△ABC折疊,使B點與AC的中點D重合,折痕為EF,則線段BF的長是()A. B.2 C. D.4.使有意義的的取值范圍是()A. B. C. D.5.一組數(shù)據(jù)1,2,3,4,5的方差與下列哪組數(shù)據(jù)的方差相同的是()A.2,4,6,8,10B.10,20,30,40,50C.11,12,13,14,15D.11,22,33,44,556.如圖,□ABCD中,∠C=108°,BE平分∠ABC,則∠AEB等于()A.18° B.36° C.72° D.108°7.如圖,一次函數(shù)y1=k1x+2與反比例函數(shù)y2=的圖象交點A(m,2)和B(﹣4,﹣1)兩點,若y1>y2,則x的取值范圍是()A.x<﹣4或0<x<2 B.x>2或﹣4<x<0C.﹣4<x<2 D.x<﹣4或x>28.如圖,正方形ABCD的邊長為4,點E在邊AB上,AE=1,若點P為對角線BD上的一個動點,則△PAE周長的最小值是()A.3 B.4 C.5 D.69.下列命題正確的個數(shù)是()(1)若x2+kx+25是一個完全平方式,則k的值等于10;(2)正六邊形的每個內(nèi)角都等于相鄰?fù)饨堑?倍;(3)一組對邊平行,一組對角相等的四邊形是平行四邊形;(4)順次連結(jié)四邊形的四邊中點所得的四邊形是平行四邊形A.1 B.2 C.3 D.410.已知函數(shù)是反比例函數(shù),則此反比例函數(shù)的圖象在()A.第一、三象限 B.第二、四象限C.第一、四象限 D.第二、三象限11.某超市銷售A,B,C,D四種礦泉水,它們的單價依次是5元、3元、2元、1元.某天的銷售情況如圖所示,則這天銷售的礦泉水的平均單價是()A.1.95元 B.2.15元 C.2.25元 D.2.75元12.在矩形ABCD中,AB=3,BC=4,E是BC上一點,且與B、C不重合,若AE是整數(shù),則AE等于()A.3 B.4 C.5 D.6二、填空題(每題4分,共24分)13.下表記錄了甲、乙、丙、丁四名跳遠(yuǎn)運動員選拔賽成績的平均數(shù)與方差s2:甲乙丙丁平均數(shù)(cm)561560561560方差s2(cm2)3.53.515.516.5根據(jù)表中數(shù)據(jù),要從中選擇一名成績好又發(fā)揮穩(wěn)定的運動員參加比賽,應(yīng)該選擇_____.14.平行四邊形的一個內(nèi)角平分線將該平行四邊形的一邊分為2cm和3cm兩部分,則該平行四邊形的周長為______.15.若一組數(shù)據(jù),,,,的平均數(shù)是,則__________.,這組數(shù)據(jù)的方差是_________.16.如圖,在平面直角坐標(biāo)系中,過點分別作軸于點,軸于點,、分別交反比例函數(shù)的圖像于點、,則四邊形的面積為__________.17.在正方形ABCD中,E在BC上,BE=2,CE=1,P是BD上的動點,則PE+PC的最小值是_____________.18.如圖,矩形ABCD的對角線AC與BD相交點O,∠AOB=60°,AB=10,E、F分別為AO、AD的中點,則EF的長是_____.三、解答題(共78分)19.(8分)在?ABCD中,對角線AC、BD相交于O,EF過點O,連接AF、CE.(1)求證:△BFO≌△DEO;(2)若AF⊥BC,試判斷四邊形AFCE的形狀,并加以證明;(3)若在(2)的條件下再添加EF平分∠AEC,試判斷四邊形AFCE的形狀,無需說明理由.20.(8分)請閱讀,并完成填空與證明:初二(8)、(9)班數(shù)學(xué)興趣小組展示了他們小組探究發(fā)現(xiàn)的結(jié)果,內(nèi)容為:圖1,正三角形中,在,邊上分別取,,使,連接,,發(fā)現(xiàn)利用“”證明≌,可得到,,再利用三角形的外角定理,可求得(1)圖2正方形中,在,邊上分別取,,使,連接,,那么,且度,請證明你的結(jié)論.(2)圖3正五邊形中,在,邊上分別取,,使,連接,,那么,且度;(3)請你大膽猜測在正邊形中的結(jié)論:21.(8分)為執(zhí)行中央“節(jié)能減排,美化環(huán)境,建設(shè)美麗新農(nóng)村”的國策,我市某村計劃建造兩種型號的沼氣池共20個,以解決該村所有農(nóng)戶的燃料問題,兩種型號沼氣池的占地面積、使用農(nóng)戶數(shù)及造價見下表:型號占地面積(/個)使用農(nóng)戶數(shù)(戶/個)造價(萬元/個)已知可供建造沼氣池的占地面積不超過,該村農(nóng)戶共有492戶.(1)滿足條件的方案共有幾種?寫出解答過程;(2)通過計算判斷,哪種建造方案最省錢.22.(10分)如圖,在平行四邊形ABCD中,E、F是對角線BD上的兩點,且BF=DE.求證:AE∥CF.23.(10分)(1)因式分解:6x(2)解不等式組:x-3x-2≥4,24.(10分)解不等式組.25.(12分)如圖,已知是平行四邊形中邊的中點,是對角線,連結(jié)并延長交的延長線于點,連結(jié).求證:四邊形是平行四邊形.26.陽光小區(qū)附近有一塊長100m,寬80m的長方形空地,在空地上有兩條相同寬度的步道(一縱一橫)和一個邊長為步道寬度7倍的正方形休閑廣場,兩條步道的總面積與正方形休閑廣場的面積相等,如圖1所示.設(shè)步道的寬為a(m).(1)求步道的寬.(2)為了方便市民進行跑步健身,現(xiàn)按如圖2所示方案增建塑膠跑道.己知塑膠跑道的寬為1m,長方形區(qū)域甲的面積比長方形區(qū)域乙大441m2,且區(qū)域丙為正方形,求塑膠跑道的總面積.

參考答案一、選擇題(每題4分,共48分)1、B【解析】

根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可.【詳解】A.367人中至少有2人生日相同,是必然事件,故A不符合題意;B.打開電視,正在播廣告,是隨機事件,故B符合題意;C.沒有水分,種子發(fā)芽,是不可能事件,故C不符合題意;D.如果、都是實數(shù),那么,是必然事件,故D不符合題意.故選B.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.2、A【解析】

根據(jù)中位數(shù)的定義:位于中間位置或中間兩數(shù)的平均數(shù)可以得到去掉一個最高分和一個最低分不影響中位數(shù).【詳解】去掉一個最高分和一個最低分對中位數(shù)沒有影響,故選A.【點睛】考查了統(tǒng)計量的選擇,解題的關(guān)鍵是了解中位數(shù)的定義.3、D【解析】

根據(jù)題意可得:,在中,根據(jù)勾股定理可列出方程,解方程可得BF的長.【詳解】解:,D是AC中點折疊設(shè)在中,故選D.【點睛】本題考查了翻折問題,勾股定理的運用,關(guān)鍵是通過勾股定理列出方程.4、B【解析】

根據(jù)二次根式有意義的條件得到關(guān)于x的不等式,解不等式即得答案.【詳解】解:要使有意義,則,解得.故選B.【點睛】本題考查了二次根式有意義的條件,明確二次根式中被開方數(shù)非負(fù)是求解的關(guān)鍵.5、C【解析】

根據(jù)方差的性質(zhì)即可解答本題.【詳解】C選項中數(shù)據(jù)是在數(shù)據(jù)1,2,3,4,5上都加10,故方差保持不變.故選:C.【點睛】本題考查了方差,一般一組數(shù)據(jù)加上(減去)相同的數(shù)后,方差不變.6、B【解析】

首先根據(jù)平行四邊形的性質(zhì),得出∠ABC的度數(shù),又由BE平分∠ABC,得出∠ABE=∠CBE,∠AEB和∠CBE是內(nèi)錯角,相等,即可得出∠AEB.【詳解】解:∵□ABCD中,∠C=108°,∴∠ABC=180°-108°=72°又∵BE平分∠ABC,∴∠ABE=∠CBE=36°又∵∠AEB=∠CBE∴∠AEB=36°故答案為B.【點睛】此題主要考查利用平行四邊形的性質(zhì)求角的度數(shù),熟練掌握即可解題.7、B【解析】

先把B點坐標(biāo)代入y1=求出k1的值得到反比例函數(shù)解析式,再利用反比例函數(shù)解析式確定A點坐標(biāo),然后寫出一次函數(shù)圖象在反比例函數(shù)圖象上方所對應(yīng)的自變量的范圍.【詳解】解:把B(﹣4,﹣1)代入y1=得k1=﹣4×(﹣1)=4,所以反比例函數(shù)解析式為y1=,把A(m,1)代入y1=得1m=4,解得m=1,所以A(1,1),當(dāng)﹣4<x<0或x>1時,y1>y1.故選:B.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標(biāo),把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.8、D【解析】

連接AC、CE,CE交BD于P,此時AP+PE的值最小,求出CE長,即可求出答案.【詳解】解:連接AC、CE,CE交BD于P,連接AP、PE,∵四邊形ABCD是正方形,∴OA=OC,AC⊥BD,即A和C關(guān)于BD對稱,∴AP=CP,即AP+PE=CE,此時AP+PE的值最小,所以此時△PAE周長的值最小,∵正方形ABCD的邊長為4,點E在邊AB上,AE=1,∴∠ABC=90°,BE=4﹣1=3,由勾股定理得:CE=5,∴△PAE的周長的最小值是AP+PE+AE=CE+AE=5+1=6,故選D.【點睛】本題考查了正方形的性質(zhì)與軸對稱——最短路徑問題,知識點比較綜合,屬于較難題型.9、C【解析】

根據(jù)完全平方式、正六邊形、平行四邊形的判定判斷即可【詳解】(1)若x2+kx+25是一個完全平方式,則k的值等于±10,是假命題;(2)正六邊形的每個內(nèi)角都等于相鄰?fù)饨堑?倍,是真命題;(3)一組對邊平行,一組對角相等的四邊形是平行四邊形,是真命題;(4)順次連結(jié)四邊形的四邊中點所得的四邊形是平行四邊形,是真命題;故選C【點睛】此題考查完全平方式、正六邊形、平行四邊形的判定,掌握其性質(zhì)是解題關(guān)鍵10、A【解析】

首先根據(jù)反比例函數(shù)的定義,即可得出,進而得出反比例函數(shù)解析式,然后根據(jù)其性質(zhì),即可判定其所在的象限.【詳解】根據(jù)已知條件,得即∴函數(shù)解析式為∴此反比例函數(shù)的圖象在第一、三象限故答案為A.【點睛】此題主要考查反比例函數(shù)的性質(zhì),熟練掌握,即可解題.11、C【解析】

根據(jù)加權(quán)平均數(shù)的定義列式計算可得.【詳解】解:這天銷售的礦泉水的平均單價是(元),故選:C.【點睛】本題主要考查加權(quán)平均數(shù),解題的關(guān)鍵是掌握加權(quán)平均數(shù)的定義.12、B【解析】

由勾股定理可求AC的長,即可得AE的范圍,則可求解.【詳解】解:連接AC,∵在矩形ABCD中,AB=3,BC=4∴AC==5∴E是BC上一點,且與B、C不重合∴3<AE<5,且AE為整數(shù)∴AE=4故選B.【點睛】本題考查了矩形的性質(zhì),勾股定理,熟練運用矩形的性質(zhì)是本題的關(guān)鍵.二、填空題(每題4分,共24分)13、甲【解析】

首先比較平均數(shù),平均數(shù)相同時選擇方差較小的運動員參加.【詳解】∵,∴從甲和丙中選擇一人參加比賽,∵,∴選擇甲參賽,故答案為甲.【點睛】此題考查了平均數(shù)和方差,關(guān)鍵是根據(jù)方差反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.14、14cm或16cm【解析】試題分析:根據(jù)題意畫出圖形,由平行四邊形得出對邊平行,又由角平分線可以得出△ABE為等腰三角形,然后分別討論BE=2cm,CE=3cm或BE=3cm,CE=2cm,繼而求得答案.解:如圖,∵四邊形ABCD為平行四邊形,∴AD∥BC,∴∠DAE=∠AEB,∵AE為角平分線,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①當(dāng)AB=BE=2cm,CE=3cm時,則周長為14cm;②當(dāng)AB=BE=3cm時,CE=2cm,則周長為16cm.故答案為14cm或16cm.考點:平行四邊形的性質(zhì).15、【解析】

根據(jù)平均數(shù)的計算方法可求出a,然后根據(jù)方差公式求方差即可.【詳解】∵,,,,的平均數(shù)是,∴1+3+a+2+5=3×5,∴a=4,S2=[(1-3)2+(3-3)2+(4-3)2+(2-3)2+(5-3)2]÷5=2.故答案為:4,2.【點睛】本題考查了算術(shù)平均數(shù)和方差的計算,熟練掌握計算公式是解答本題的關(guān)鍵.算術(shù)平均數(shù)的計算公式是:,方差的計算公式為:.16、1【解析】

根據(jù)反比例函數(shù)系數(shù)k的幾何意義可得S△DBO=S△AOC=|k|=1,再利用矩形OCPD的面積減去△BDO和△CAO的面積即可.【詳解】解:∵B、A兩點在反比例函數(shù)的圖象上,∴S△DBO=S△AOC=×2=1,∵P(2,3),∴四邊形DPCO的面積為2×3=6,∴四邊形BOAP的面積為6﹣1﹣1=1,故答案為:1.【點睛】此題主要考查了反比例函數(shù)k的幾何意義,關(guān)鍵是掌握在反比例函數(shù)的圖象上任意一點象坐標(biāo)軸作垂線,這一點和垂足以及坐標(biāo)原點所構(gòu)成的三角形的面積是|k|,且保持不變.17、13【解析】

根據(jù)題意畫出圖形,連接AC、AE,由正方形的性質(zhì)可知A、C關(guān)于直線BD對稱,故AE的長即為PE+PC的最小值,再根據(jù)勾股定理求出AE的長即可.【詳解】如圖所示:連接AC、AE,∵四邊形ABCD是正方形,∴A、C關(guān)于直線BD對稱,∴AE的長即為PE+PC的最小值,∵BE=2,CE=1,∴BC=AB=2+1=3,在Rt△ABE中,∵AE=AB∴PE與PC的和的最小值為13.故答案為:13.【點睛】本題考查的是軸對稱-最短路線問題及正方形的性質(zhì),熟知“兩點之間,線段最短”是解決問題的關(guān)鍵.18、1.【解析】

根據(jù)矩形的性質(zhì)得出AO=OC,DO=BO,AC=BD,求出DO=CO=AO=BO,求出△AOB是等邊三角形,根據(jù)等邊三角形的性質(zhì)得出AO=OB=DO=10,根據(jù)三角形的中位線定理求出即可.【詳解】∵四邊形ABCD是矩形,∴AO=OC,DO=BO,AC=BD,∴DO=CO=AO=BO,∵∠AOB=60°,∴△AOB是等邊三角形,∵AB=10,∴AO=OB=DO=10,∵E、F分別為AO、AD的中點,∴EF=DO==1,故答案為:1.【點睛】本題考查了矩形的性質(zhì),等邊三角形的判定與性質(zhì),三角形的中位線等知識.矩形的性質(zhì):①矩形的對邊平行且相等;②矩形的四個角都是直角;③矩形的對角線相等且互相平分.三、解答題(共78分)19、(1)詳見解析;(2)四邊形AFCE是矩形,證明見解析;(3)四邊形AFCE是正方形.【解析】

(1)由平行四邊形的性質(zhì)得出OB=OD,OA=OC,AD∥BC,得出∠OBF=∠ODE,由ASA證明△BFO≌△DEO即可;(2)由全等三角形的性質(zhì)得出BF=DE,證出四邊形AFCE是平行四邊形,再證出∠AFC=90°,即可得出四邊形AFCE是矩形.(3)由EF平分∠AEC知∠AEF=∠CEF,再由AD∥BC知∠AEF=∠CFE,從而得∠CEF=∠CFE,繼而知CE=CF,據(jù)此可得答案.【詳解】解:(1)∵四邊形ABCD是平行四邊形,∴OB=OD,AD∥BC,AD=BC,∴∠OBF=∠ODE,在△BFO和△DEO中,∵,∴△BFO≌△DEO(ASA);(2)四邊形AFCE是矩形;理由如下:∵△BFO≌△DEO,∴BF=DE,∴CF=AE,∵AD∥BC,∴四邊形AFCE是平行四邊形;又∵AF⊥BC,∴∠AFC=90°,∴四邊形AFCE是矩形;(3)∵EF平分∠AEC,∴∠AEF=∠CEF,∵AD∥BC,∴∠AEF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,∴四邊形AFCE是正方形.【點睛】本題考查了四邊形的綜合問題,主要考查平行四邊形的性質(zhì)與判定、全等三角形的判定與性質(zhì)、矩形的判定;熟練掌握平行四邊形的性質(zhì),并能進行推理論證是解決問題的關(guān)鍵.20、(1);;證明詳見解析;(2);;(3)對于正n邊形,結(jié)論為:,【解析】

(1)利用SAS證出≌,從而證出,,然后利用等量代換即可得出結(jié)論;(2)先求出正五邊形的每個內(nèi)角的度數(shù),利用SAS證出≌,從而證出,,然后利用等量代換即可得出結(jié)論;(3)根據(jù)題意,畫出圖形,然后根據(jù)(1)(2)的方法推出結(jié)論即可.【詳解】(1),且度.證明如下:∵四邊形是正方形∴,在△ABN和△DAM中∴≌∴,∵∴故答案為:;;(2)且度.證明如下:正五邊形的每個內(nèi)角為:,∴,在△ABN和△EAM中∴≌∴,∵∴故答案為:;;(3)設(shè)這個正n邊形為,在,邊上分別取,,使,連接,,和交于點O,如下圖所示:正n邊形的每個內(nèi)角為:,∴,在和中∴≌∴,∵∴即對于正n邊形,結(jié)論為:,.【點睛】此題考查的是全等三角形的判定及性質(zhì)和多邊形的內(nèi)角和,掌握全等三角形的判定及性質(zhì)和多邊形的內(nèi)角和公式是解決此題的關(guān)鍵.21、(1)滿足條件的方案有三種,方案一建造型沼氣池7個,型沼氣池13個;方案二建造型沼氣池8個,型沼氣池12個;方案三建造型沼氣池9個,型沼氣池11個,見解析;(2)方案三最省錢,見解析【解析】

(1)關(guān)系式為:A型沼氣池占地面積+B型沼氣池占地面積≤365;A型沼氣池能用的戶數(shù)+B型沼氣池能用的戶數(shù)≥492;

(2)由(1)得到情況進行分析.【詳解】解(1)設(shè)建設(shè)型沼氣池個,型沼氣池個,根據(jù)題意列不等式組得解不等式組得:∴滿足條件的方案有三種,方案一建造型沼氣池7個,型沼氣池13個方案二建造型沼氣池8個,型沼氣池12個方案三建造型沼氣池9個,型沼氣池11個(2)方案一的造價為:萬元方案二的造價為萬元方案三的造價為:2×9+3×11=51萬元所以選擇方案三建造9個,11個最省錢【點睛】此題考查一元一次不等式的應(yīng)用,解題關(guān)鍵在于根據(jù)題意列出不等式.22、證明見解析【解析】試題分析:通過全等三角形△ADE≌△CBF的對應(yīng)角相等證得∠AED=∠CFB,則由平行線的判定證得結(jié)論.證明:∵平行四邊形ABCD中,AD=BC,AD∥BC,∴∠ADE=∠CBF.∵在△ADE與△CBF中,AD=BC,∠ADE=∠CBF,DE=BF,∴△ADE≌△CBF(SAS).∴∠AED=∠CFB.∴AE∥CF.23、(1)y(y+3x)2;(2)【解析】

(1)先提取y,再根據(jù)完全平方公式即可得到答案;(2)先分別求出不等式組中兩個不等式的解,再將答案表示的數(shù)軸上.【詳解】(1)因式分解:6xy=y(y=y(y+3x)(2)解不等式組:x-3(x-2)≥4解:解不等式①,得x≤1解不等式②,得x<4在同一數(shù)軸上表示不等式①②的解集,如圖.∴原不等式組的解集為:x≤1【點睛】本題考查因式分解、解不等式組和數(shù)軸,解題的關(guān)鍵是掌握因式分解、解不等式組和數(shù)軸.24、【解析】

分別求出每一個不等式的解集,根據(jù)口訣:同大取大、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論