廣東省佛山市南海區(qū)里水鎮(zhèn)2024屆八年級(jí)下冊(cè)數(shù)學(xué)期末經(jīng)典試題含解析_第1頁
廣東省佛山市南海區(qū)里水鎮(zhèn)2024屆八年級(jí)下冊(cè)數(shù)學(xué)期末經(jīng)典試題含解析_第2頁
廣東省佛山市南海區(qū)里水鎮(zhèn)2024屆八年級(jí)下冊(cè)數(shù)學(xué)期末經(jīng)典試題含解析_第3頁
廣東省佛山市南海區(qū)里水鎮(zhèn)2024屆八年級(jí)下冊(cè)數(shù)學(xué)期末經(jīng)典試題含解析_第4頁
廣東省佛山市南海區(qū)里水鎮(zhèn)2024屆八年級(jí)下冊(cè)數(shù)學(xué)期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東省佛山市南海區(qū)里水鎮(zhèn)2024屆八年級(jí)下冊(cè)數(shù)學(xué)期末經(jīng)典試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.有19位同學(xué)參加歌詠比賽,所得的分?jǐn)?shù)互不相同,所得分前10位同學(xué)進(jìn)入決賽.某同學(xué)知道自己的分?jǐn)?shù)后,要判斷自己能否進(jìn)入決賽,他只需知道這19位同學(xué)得分的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.總分2.若實(shí)數(shù)a、b、c滿足a+b+c=0,且a<b<c,則函數(shù)y=ax+c的圖象可能是()A. B. C. D.3.根據(jù)天氣預(yù)報(bào),2018年6月20日雙流區(qū)最高氣溫是,最低氣溫是,則雙流區(qū)氣溫的變化范圍是()A. B. C. D.4.若無解,則m的值是()A.3 B.﹣3 C.﹣2 D.25.若一次函數(shù)y=ax+b的圖象經(jīng)過第一、二、四象限,則下列不等式中總是成立的是(

)A.a(chǎn)b>0 B.a(chǎn)﹣b>0 C.a(chǎn)2+b>0 D.a(chǎn)+b>06.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對(duì)稱軸為x=﹣.下列結(jié)論中,正確的是()A.a(chǎn)bc>0 B.a(chǎn)+b=0 C.2b+c>0 D.4a+c<2b7.四邊形的對(duì)角線互相平分,要使它變?yōu)榫匦?,需要添加的條件是()A.AB=CD B.AC=BDC.AB=BC D.AD=BC8.小張的爺爺每天堅(jiān)持體育鍛煉,星期天爺爺從家里跑步到公園,打了一會(huì)太極拳,然后沿原路慢步走到家,下面能反映當(dāng)天爺爺離家的距離y(米)與時(shí)間t(分鐘)之間關(guān)系的大致圖象是()A. B. C. D.9.正方形ABCD的邊長(zhǎng)為4,點(diǎn)E在對(duì)角線BD上,且∠BAE=22.50,EF⊥AB,垂足為F,則EF的長(zhǎng)()A.1 B. C. D.10.已知一組數(shù)據(jù)5,5,6,6,6,7,7,則這組數(shù)據(jù)的方差為()A. B. C. D.611.如圖①,在邊長(zhǎng)為4的正方形ABCD中,點(diǎn)P以每秒2cm的速度從點(diǎn)A出發(fā),沿AB→BC的路徑運(yùn)動(dòng),到點(diǎn)C停止.過點(diǎn)P作PQ∥BD,PQ與邊AD(或邊CD)交于點(diǎn)Q,PQ的長(zhǎng)度y(cm)與點(diǎn)P的運(yùn)動(dòng)時(shí)間x(秒)的函數(shù)圖象如圖②所示.當(dāng)點(diǎn)P運(yùn)動(dòng)2.5秒時(shí),PQ的長(zhǎng)是()A.2cm B.3cm C.4cm D.5cm12.小明騎自行車到公園游玩,勻速行駛一段路程后,開始休息,休息了一段時(shí)間后,為了盡快趕到目的地,便提高了,車速度,很快到達(dá)了公園.下面能反映小明離公園的距離(千米)與時(shí)間(小時(shí))之間的函數(shù)關(guān)系的大致圖象是()A. B. C. D.二、填空題(每題4分,共24分)13.在中,,,點(diǎn)在上,.若點(diǎn)是邊上異于點(diǎn)的另一個(gè)點(diǎn),且,則的值為______.14.如圖,在□ABCD中,對(duì)角線AC和BD交于點(diǎn)O,點(diǎn)E為AB邊上的中點(diǎn),OE=2.5cm,則AD=________cm。15.已知是整數(shù),則正整數(shù)n的最小值為___16.如圖,函數(shù)y=k1x

(x>0)的圖象與矩形OABC的邊BC交于點(diǎn)D,分別過點(diǎn)A,D作AF∥DE,交直線y=k2x(k2<0)于點(diǎn)F,E.若OE=OF,BD=2CD,四邊形ADEF的面積為12,則k1的值為17.若的整數(shù)部分是a,小數(shù)部分是b,則______.18.若,則=______.三、解答題(共78分)19.(8分)如圖,在平面直角坐標(biāo)系中,矩形的頂點(diǎn)坐標(biāo)為,點(diǎn)在邊上從點(diǎn)運(yùn)動(dòng)到點(diǎn),以為邊作正方形,連,在點(diǎn)運(yùn)動(dòng)過程中,請(qǐng)?zhí)骄恳韵聠栴}:(1)的面積是否改變,如果不變,求出該定值;如果改變,請(qǐng)說明理由;(2)若為等腰三角形,求此時(shí)正方形的邊長(zhǎng).20.(8分)某學(xué)校要從甲乙兩名射擊運(yùn)動(dòng)員中挑選一人參加全市比賽,在選拔賽中,每人進(jìn)行了5次射擊,甲的成績(jī)(環(huán))為:9.7,10,9.6,9.8,9.9;乙的成績(jī)的平均數(shù)為9.8,方差為0.032;(1)甲的射擊成績(jī)的平均數(shù)和方差分別是多少?(2)據(jù)估計(jì),如果成績(jī)的平均數(shù)達(dá)到9.8環(huán)就可能奪得金牌,為了奪得金牌,應(yīng)選誰參加比賽?21.(8分)(10分)已知E,F(xiàn)分別為正方形ABCD的邊BC,CD上的點(diǎn),AF,DE相交于點(diǎn)G,當(dāng)E,F(xiàn)分別為邊BC,CD的中點(diǎn)時(shí),有:①AF=DE;②AF⊥DE成立.試探究下列問題:(1)如圖1,若點(diǎn)E不是邊BC的中點(diǎn),F(xiàn)不是邊CD的中點(diǎn),且CE=DF,上述結(jié)論①,②是否仍然成立?(請(qǐng)直接回答“成立”或“不成立”),不需要證明)(2)如圖2,若點(diǎn)E,F(xiàn)分別在CB的延長(zhǎng)線和DC的延長(zhǎng)線上,且CE=DF,此時(shí),上述結(jié)論①,②是否仍然成立?若成立,請(qǐng)寫出證明過程,若不成立,請(qǐng)說明理由;(3)如圖3,在(2)的基礎(chǔ)上,連接AE和BF,若點(diǎn)M,N,P,Q分別為AE,EF,F(xiàn)D,AD的中點(diǎn),請(qǐng)判斷四邊形MNPQ是“矩形、菱形、正方形”中的哪一種,并證明你的結(jié)論.22.(10分)如圖,分別表示甲步行與乙騎自行車(在同一條路上)行走的路程、與時(shí)間的關(guān)系,觀察圖象并回答下列問題:(1)乙出發(fā)時(shí),乙與甲相距千米;(2)走了一段路程后,乙有事耽擱,停下來時(shí)間為小時(shí);(3)甲從出發(fā)起,經(jīng)過小時(shí)與乙相遇;(4)甲行走的平均速度是多少千米小時(shí)?23.(10分)如圖所示,方格紙中的每個(gè)小方格都是邊長(zhǎng)為個(gè)單位長(zhǎng)度的正方形,在建立平面直角坐標(biāo)系后,的頂點(diǎn)均在格點(diǎn)上.①以原點(diǎn)為對(duì)稱中心,畫出與關(guān)于原點(diǎn)對(duì)稱的.②將繞點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)得到,畫出,并求出的長(zhǎng).24.(10分)如圖1,在ABC中,∠A=80°,BD、CE分別平分∠ABC、∠ACB,BD與CE交于點(diǎn)F.(1)求∠BFC的度數(shù);(2)如圖2,EG、DG分別平分∠AEF、∠ADF,EG與DG交于點(diǎn)G,求∠EGD的度數(shù).25.(12分)寫出同時(shí)具備下列兩個(gè)條件的一次函數(shù)關(guān)系式_____.(寫出一個(gè)即可)(1)y隨x的增大而減??;(2)圖象經(jīng)過點(diǎn)(1,﹣2).26.某校300名學(xué)生參加植樹活動(dòng),要求每人植4~7棵,活動(dòng)結(jié)束后隨機(jī)抽查了20名學(xué)生每人的植樹量,并分為四種類型,A:4棵;B:5棵;C:6棵;D:7棵.將各類的人數(shù)繪制成扇形圖(如圖1)和條形圖(如圖2),經(jīng)確認(rèn)扇形圖是正確的,而條形圖尚有一處錯(cuò)誤.回答下列問題:(1)條形圖中存在錯(cuò)誤的類型是,人數(shù)應(yīng)該為人;(2)寫出這20名學(xué)生每人植樹量的眾數(shù)棵,中位數(shù)棵;(3)估計(jì)這300名學(xué)生共植樹棵.

參考答案一、選擇題(每題4分,共48分)1、B【解析】

因?yàn)榈?0名同學(xué)的成績(jī)排在中間位置,即是中位數(shù).所以需知道這19位同學(xué)成績(jī)的中位數(shù).【詳解】解:19位同學(xué)參加歌詠比賽,所得的分?jǐn)?shù)互不相同,取得前10位同學(xué)進(jìn)入決賽,中位數(shù)就是第10位,因而要判斷自己能否進(jìn)入決賽,他只需知道這19位同學(xué)的中位數(shù)就可以,故選:B.【點(diǎn)睛】本題考查了統(tǒng)計(jì)量的選擇,掌握各個(gè)統(tǒng)計(jì)量的特點(diǎn)是解題關(guān)鍵.2、A【解析】

∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正負(fù)情況不能確定也無需確定).a(chǎn)<0,則函數(shù)y=ax+c圖象經(jīng)過第二四象限,c>0,則函數(shù)y=ax+c的圖象與y軸正半軸相交,觀察各選項(xiàng),只有A選項(xiàng)符合.故選A.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?、D【解析】

根據(jù)題意列出不等式即可求出答案.【詳解】解:由于最高氣溫是30℃,最低氣溫是23℃,∴23≤t≤30,故選:D.【點(diǎn)睛】本題考查不等式,解題的關(guān)鍵是正確理解不等式的定義,本題屬于基礎(chǔ)題型.4、D【解析】方程兩邊同乘以x-3可得m+1-x=0,因無解,可得x=3,代入得m=2,故選D.5、C【解析】解:∵一次函數(shù)y=ax+b的圖象經(jīng)過第一、二、四象限,∴a<0,b>0,∴ab<O,故A錯(cuò)誤,a﹣b<0,故B錯(cuò)誤,,故C正確,a+b不一定大于0,故D錯(cuò)誤.故選C.6、D【解析】由圖象對(duì)稱軸為直線x=-,則-=-,得a=b,A中,由圖象開口向上,得a>0,則b=a>0,由拋物線與y軸交于負(fù)半軸,則c<0,則abc<0,故A錯(cuò)誤;B中,由a=b,則a-b=0,故B錯(cuò)誤;C中,由圖可知當(dāng)x=1時(shí),y<0,即a+b+c<0,又a=b,則2b+c<0,故C錯(cuò)誤;D中,由拋物線的對(duì)稱性,可知當(dāng)x=1和x=-2時(shí),函數(shù)值相等,則當(dāng)x=-2時(shí),y<0,即4a-2b+c<0,則4a+c<2b,故D正確.故選D.點(diǎn)睛:二次函數(shù)y=ax2+bx+c(a≠0)中,a的符號(hào)由拋物線開口方向決定;b的符號(hào)由對(duì)稱軸的位置及a的符號(hào)決定;c的符號(hào)由拋物線與y軸交點(diǎn)的位置決定.此外還要注意x=1,-1,2及-2對(duì)應(yīng)函數(shù)值的正負(fù)來判斷其式子的正確與否.7、B【解析】

四邊形ABCD的對(duì)角線互相平分,則說明四邊形是平行四邊形,由矩形的判定定理可得,只需添加條件是對(duì)角線相等.【詳解】可添加AC=BD,理由如下:

∵四邊形ABCD的對(duì)角線互相平分,

∴四邊形ABCD是平行四邊形,

∵AC=BD,根據(jù)矩形判定定理對(duì)角線相等的平行四邊形是矩形,

∴四邊形ABCD是矩形.

故選:B.【點(diǎn)睛】考查了矩形的判定,關(guān)鍵是矩形的判定:①矩形的定義:有一個(gè)角是直角的平行四邊形是矩形;②有三個(gè)角是直角的四邊形是矩形;③對(duì)角線相等的平行四邊形是矩形.8、B【解析】∵y軸表示當(dāng)天爺爺離家的距離,X軸表示時(shí)間又∵爺爺從家里跑步到公園,在公園打了一會(huì)兒太極拳,然后沿原路慢步走到家,∴剛開始離家的距離越來越遠(yuǎn),到公園打太極拳時(shí)離家的距離不變,然后回家時(shí)離家的距離越來越近又知去時(shí)是跑步,用時(shí)較短,回來是慢走,用時(shí)較多∴選項(xiàng)B中的圖形滿足條件.故選B.9、B【解析】

根據(jù)題意連接AC,與BD的交點(diǎn)為O.再根據(jù),,可得AE是的角平分線,所以可得OE=EF,BE=,所以O(shè)B=,因此可計(jì)算出EF的長(zhǎng).【詳解】解:根據(jù)題意連接AC,與BD的交點(diǎn)為O.四邊形ABCD為正方形AE是的角平分線故選B.【點(diǎn)睛】本題主要考查正方形的性質(zhì),關(guān)鍵在于根據(jù)題意列出方程,這是考試的??键c(diǎn),應(yīng)當(dāng)熟練掌握.10、A【解析】

先求出這組數(shù)據(jù)的平均數(shù),然后代入方差計(jì)算公式求出即可.【詳解】解:∵平均數(shù)=(5+5+6+6+6+7+7)=6,S2=[(5-6)2+(5-6)2+(6-6)2+(6-6)2+(6-6)2+(7-6)2+(7-6)2]=.故選:A.【點(diǎn)睛】本題考查方差的定義,它反映了一組數(shù)據(jù)的波動(dòng)大小,方差越大,波動(dòng)性越大,反之也成立.11、B【解析】試題解析:點(diǎn)P運(yùn)動(dòng)2.5秒時(shí)P點(diǎn)運(yùn)動(dòng)了5cm,CP=8-5=3cm,由勾股定理,得PQ=cm,故選B.考點(diǎn):動(dòng)點(diǎn)函數(shù)圖象問題.12、C【解析】

根據(jù)勻速行駛,到終點(diǎn)的距離在減少,休息時(shí)路程不變,休息后的速度變快,路程變化快,可得答案.【詳解】A.路程應(yīng)該在減少,故A不符合題意;B.路程先減少得快,后減少的慢,不符合題意,故B錯(cuò)誤;C.休息前路程減少的慢,休息后提速在勻速行駛,路程減少得快,故C符合題意;D.休息時(shí)路程應(yīng)不變,不符合題意,故D錯(cuò)誤;故選C.【點(diǎn)睛】本題考查了函數(shù)圖象,路程先減少得慢,休息后減少得快是解題關(guān)鍵.二、填空題(每題4分,共24分)13、24或21或【解析】

情況1:連接EP交AC于點(diǎn)H,依據(jù)先證明是菱形,再根據(jù)菱形的性質(zhì)可得到∠ECH=∠PCH=10°,然后依據(jù)SAS可證明△ECH≌△PCH,則∠EHC=∠PHC=90°,最后依據(jù)EP=2EH=2sin10°?EC求解即可.情況2:如圖2所示:△ECP為等腰直角三角形,則=EC=2.此時(shí),=24

情況2:如圖2:過點(diǎn)P′作P′F⊥BC.通過解直角三角形可以解得FC,EF,再在Rt△P′EF中,利用勾股定理可以求得.【詳解】解:情況1:如圖所示:連接EP交AC于點(diǎn)H.

∵在中,∴是菱形∵菱形ABCD中,∠B=10°,

∴∠BCD=120°,∠ECH=∠PCH=10°.

在△ECH和△PCH中,

∴△ECH≌△PCH.

∴∠EHC=∠PHC=90°,EH=PH.

∴EP=2EH=2sin10°?EC=2××2=1.∴=21

情況2:如圖2所示:△ECP為等腰直角三角形,則=EC=2.∴=24

情況2:如圖2:過點(diǎn)P′作P′F⊥BC.

∵P′C=2,BC=4,∠B=10°,

∴P′C⊥AB.

∴∠BCP′=20°.

∴FC=×2=2,P′F=,EF=2-2.∴=,

故答案為:24或21或.【點(diǎn)睛】本題主要考查的是菱形的性質(zhì),全等三角形的判定和性質(zhì),以及解直角三角形和勾股定理得結(jié)合,是綜合性題目,難度較大.14、5【解析】

由平行四邊形的對(duì)角線互相平分得AO=OC,結(jié)合E為AB的中點(diǎn),則OE為△ABC的中位線,得到BC=2OE,從而求出BC的長(zhǎng).【詳解】∵四邊形ABCD是平行四邊形,∴OA=OC,又∵E為AB的中點(diǎn),∴OE為△ABC的中位線,∴BC=2OE=2×2.5=5cm故答案為:5.【點(diǎn)睛】此題主要考查中位線的性質(zhì),解題的關(guān)鍵是熟知中位線的判斷與性質(zhì).15、1【解析】

因?yàn)槭钦麛?shù),且,則1n是完全平方數(shù),滿足條件的最小正整數(shù)n為1.【詳解】∵,且是整數(shù),

∴是整數(shù),即1n是完全平方數(shù);

∴n的最小正整數(shù)值為1.

故答案為:1.【點(diǎn)睛】主要考查了二次根式的定義,關(guān)鍵是根據(jù)乘除法法則和二次根式有意義的條件.二次根式有意義的條件是被開方數(shù)是非負(fù)數(shù)進(jìn)行解答.16、2【解析】

如圖,連接OD,過O作OM∥ED交AD于M,可以得出S△AOD=12S四邊形ADEF,進(jìn)而得到S矩形OACB的值.作DH⊥OA于H,可得S矩形OCDH【詳解】解:如圖,連接OD,過O作OM∥ED交AD于M.S△AOD=S△AOM+S△DOM=12OM×h1+12OM×h2==12OM(h1+h2),S四邊形ADEF=12(AF+又∵OM=12(AF+ED),h1+h2=h,故S△AOD=12S四邊形ADEF=12∵△AOD和矩形OACB同底等高,故S矩形OACB=12,作DH⊥OA于H.∵BD=2CD,BC=3CD,故S矩形OCDH=13×12=2,即CD×DH=xy=k1=2故答案為:2.【點(diǎn)睛】本題考查了反比例函數(shù)與幾何綜合.求出S△AOD的值是解答本題的關(guān)鍵.17、1.【解析】

若的整數(shù)部分為a,小數(shù)部分為b,∴a=1,b=,∴a-b==1.故答案為1.18、1【解析】

根據(jù)二次根式和偶次方根的非負(fù)性即可求出x,y的值,進(jìn)而可求答案【詳解】∵∴∴∴故答案為1.【點(diǎn)睛】本題考查的是二次根式偶次方根的非負(fù)性,能夠據(jù)此解答出x、y的值是解題的關(guān)鍵.三、解答題(共78分)19、(1)不變,;(2)正方形ADEF的邊長(zhǎng)為或或.【解析】

(1)作交延長(zhǎng)線于,證明,從而可得,繼而根據(jù)三角形面積公式進(jìn)行計(jì)算即可;(2)分、、三種情況分別討論求解即可.【詳解】(1)作交延長(zhǎng)線于,∵正方形中,,,∴,∵,∴,∴,∵矩形中,,∴,∴,∴,∴;(2)①當(dāng)時(shí),作,∵正方形中,,∴,∴,同(1)可得≌,∴,∴,∴;②當(dāng)時(shí),,∵正方形中,,,∴,∴≌,∴,∵矩形中,,∴;③當(dāng)時(shí),作,同理得,,∴;綜上,正方形ADEF的邊長(zhǎng)為或或.【點(diǎn)睛】本題考查了矩形的性質(zhì),正方形的性質(zhì),等腰三角形的性質(zhì),全等三角形的判定與性質(zhì)等,熟練掌握和靈活運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.注意分類討論思想的運(yùn)用.20、(1)9.8,0.02;(2)應(yīng)選甲參加比賽.【解析】

(1)根據(jù)平均數(shù)和方差的定義列式計(jì)算可得;(2)根據(jù)方差的意義解答即可.【詳解】(1)=×(9.7+10+9.6+9.8+9.9)=9.8(環(huán)),=×[(9.7﹣9.8)2+(10﹣9.8)2+(9.6﹣9.8)2+(9.8﹣9.8)2+(9.9﹣9.8)2]=0.02(環(huán)2);(2)∵甲、乙的平均成績(jī)均為9.8環(huán),而=0.02<=0.32,所以甲的成績(jī)更加穩(wěn)定一些,則為了奪得金牌,應(yīng)選甲參加比賽.【點(diǎn)睛】本題考查方差的定義與意義:方差反映了一組數(shù)據(jù)的波動(dòng)大小,方差越大,波動(dòng)性越大,反之也成立.21、(1)成立;(2)成立,理由見試題解析;(3)正方形,證明見試題解析.【解析】試題分析:(1)因?yàn)樗倪呅蜛BCD為正方形,CE=DF,可證△ADF≌△DCE(SAS),即可得到AF=DE,∠DAF=∠CDE,又因?yàn)椤螦DG+∠EDC=90°,即有AF⊥DE;(2)∵四邊形ABCD為正方形,CE=DF,可證△ADF≌△DCE(SAS),即可得到AF=DE,∠E=∠F,又因?yàn)椤螦DG+∠EDC=90°,即有AF⊥DE;(3)設(shè)MQ,DE分別交AF于點(diǎn)G,O,PQ交DE于點(diǎn)H,因?yàn)辄c(diǎn)M,N,P,Q分別為AE,EF,F(xiàn)D,AD的中點(diǎn),可得MQ=PN=12DE,PQ=MN=1試題解析:(1)上述結(jié)論①,②仍然成立,理由是:∵四邊形ABCD為正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(2)上述結(jié)論①,②仍然成立,理由是:∵四邊形ABCD為正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠E=∠F,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(3)四邊形MNPQ是正方形.理由是:如圖,設(shè)MQ,DE分別交AF于點(diǎn)G,O,PQ交DE于點(diǎn)H,∵點(diǎn)M,N,P,Q分別為AE,EF,F(xiàn)D,AD的中點(diǎn),∴MQ=PN=12DE,PQ=MN=1考點(diǎn):1.四邊形綜合題;2.綜合題.22、(1)1;(2)1;(3)3;(4)【解析】

利用一次函數(shù)和分段函數(shù)的性質(zhì),結(jié)合圖象信息,一一解答即可.【詳解】解:(1)由圖象可知,乙出發(fā)時(shí),乙與甲相距1千米.故答案為:1.(2))由圖象可知,走了一段路程后,乙有事耽擱,停下來的時(shí)間為:1.5-0.5=1小時(shí);故答案為:1.(3)由圖象可知,甲從出發(fā)起,經(jīng)過3小時(shí)與乙相遇.故答案為:3.(4)甲行走的平均速度是:(22.5-1)÷3=千米/小時(shí).【點(diǎn)睛】本題考查一次函數(shù)的應(yīng)用、路程、速度、時(shí)間的關(guān)系等知識(shí),解題的關(guān)鍵是靈活運(yùn)用圖中信息解決問題,所以中考常考題型.23、①見解析;②【解析】試題分析:(1)根據(jù)對(duì)稱點(diǎn)平分對(duì)應(yīng)點(diǎn)連線可找到各點(diǎn)的對(duì)應(yīng)點(diǎn),從而順次連接即可得出△A1B1C1;

(2)根據(jù)圖形旋轉(zhuǎn)的性質(zhì)畫出△A2B2C2,并

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論