版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆蘭州市重點中學(xué)中考數(shù)學(xué)四模試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.九年級學(xué)生去距學(xué)校10km的博物館參觀,一部分學(xué)生騎自行車先走,過了20min后,其余學(xué)生乘汽車出發(fā),結(jié)果他們同時到達.已知汽車的速度是騎車學(xué)生速度的2倍,求騎車學(xué)生的速度.設(shè)騎車學(xué)生的速度為xkm/h,則所列方程正確的是()A. B.C. D.2.某校有35名同學(xué)參加眉山市的三蘇文化知識競賽,預(yù)賽分數(shù)各不相同,取前18名同學(xué)參加決賽.其中一名同學(xué)知道自己的分數(shù)后,要判斷自己能否進入決賽,只需要知道這35名同學(xué)分數(shù)的(
).A.眾數(shù) B.中位數(shù) C.平均數(shù) D.方差3.已知:如圖,在平面直角坐標系xOy中,等邊△AOB的邊長為6,點C在邊OA上,點D在邊AB上,且OC=3BD,反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點C和點D,則k的值為()A. B. C. D.4.在同一直角坐標系中,函數(shù)y=kx-k與(k≠0)的圖象大致是()A. B.C. D.5.a(chǎn)、b是實數(shù),點A(2,a)、B(3,b)在反比例函數(shù)y=﹣的圖象上,則()A.a(chǎn)<b<0 B.b<a<0 C.a(chǎn)<0<b D.b<0<a6.已知二次函數(shù)y=(x+m)2–n的圖象如圖所示,則一次函數(shù)y=mx+n與反比例函數(shù)y=的圖象可能是()A. B. C. D.7.如圖所示,在△ABC中,∠C=90°,AC=4,BC=3,將△ABC繞點A逆時針旋轉(zhuǎn),使點C落在線段AB上的點E處,點B落在點D處,則BD兩點間的距離為()A.2 B. C. D.8.如圖,直線y=kx+b與x軸交于點(﹣4,0),則y>0時,x的取值范圍是()A.x>﹣4 B.x>0 C.x<﹣4 D.x<09.如圖,在平面直角坐標系中,△ABC與△A1B1C1是以點P為位似中心的位似圖形,且頂點都在格點上,則點P的坐標為()A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)10.如圖,正方形ABCD和正方形CEFG中,點D在CG上,BC=1,CE=3,CH┴AF與點H,那么CH的長是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知△ABC中,∠C=90°,AB=9,,把△ABC繞著點C旋轉(zhuǎn),使得點A落在點A′,點B落在點B′.若點A′在邊AB上,則點B、B′的距離為_____.12.拋物線向右平移1個單位,再向下平移2個單位所得拋物線是__________.13.用配方法解方程3x2﹣6x+1=0,則方程可變形為(x﹣__)2=__.14.如圖,sin∠C,長度為2的線段ED在射線CF上滑動,點B在射線CA上,且BC=5,則△BDE周長的最小值為______.15.如圖,長方體的底面邊長分別為1cm和3cm,高為6cm.如果用一根細線從點A開始經(jīng)過4個側(cè)面纏繞一圈到達點B,那么所用細線最短需要_____cm.16.若代數(shù)式的值為零,則x=_____.三、解答題(共8題,共72分)17.(8分)如圖,在矩形ABCD中,AB=3,AD=4,P沿射線BD運動,連接AP,將線段AP繞點P順時針旋轉(zhuǎn)90°得線段PQ.(1)當點Q落到AD上時,∠PAB=____°,PA=_____,長為_____;(2)當AP⊥BD時,記此時點P為P0,點Q為Q0,移動點P的位置,求∠QQ0D的大?。?3)在點P運動中,當以點Q為圓心,BP為半徑的圓與直線BD相切時,求BP的長度;(4)點P在線段BD上,由B向D運動過程(包含B、D兩點)中,求CQ的取值范圍,直接寫出結(jié)果.18.(8分)向陽中學(xué)校園內(nèi)有一條林萌道叫“勤學(xué)路”,道路兩邊有如圖所示的路燈(在鉛垂面內(nèi)的示意圖),燈柱BC的高為10米,燈柱BC與燈桿AB的夾角為120°.路燈采用錐形燈罩,在地面上的照射區(qū)域DE的長為13.3米,從D、E兩處測得路燈A的仰角分別為α和45°,且tanα=1.求燈桿AB的長度.19.(8分)如圖①,二次函數(shù)的拋物線的頂點坐標C,與x軸的交于A(1,0)、B(﹣3,0)兩點,與y軸交于點D(0,3).(1)求這個拋物線的解析式;(2)如圖②,過點A的直線與拋物線交于點E,交y軸于點F,其中點E的橫坐標為﹣2,若直線PQ為拋物線的對稱軸,點G為直線PQ上的一動點,則x軸上是否存在一點H,使D、G、H、F四點所圍成的四邊形周長最?。咳舸嬖?,求出這個最小值及點G、H的坐標;若不存在,請說明理由;(3)如圖③,連接AC交y軸于M,在x軸上是否存在點P,使以P、C、M為頂點的三角形與△AOM相似?若存在,求出點P的坐標;若不存在,請說明理由.20.(8分)先化簡分式:(-)÷?,再從-3、-3、2、-2中選一個你喜歡的數(shù)作為的值代入求值.21.(8分)在正方形ABCD中,AB=4cm,AC為對角線,AC上有一動點P,M是AB邊的中點,連接PM、PB,設(shè)A、P兩點間的距離為xcm,PM+PB長度為ycm.小東根據(jù)學(xué)習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小東的探究過程,請補充完整:(1)通過取點、畫圖、測量,得到了x與y的幾組值,如表:x/cm012345y/cm6.04.84.56.07.4(說明:補全表格時相關(guān)數(shù)值保留一位小數(shù))(2)建立平面直角坐標系,描出以補全后的表中各對對應(yīng)值為坐標的點,畫出該函數(shù)的圖象.(3)結(jié)合畫出的函數(shù)圖象,解決問題:PM+PB的長度最小值約為______cm.22.(10分)某新建小區(qū)要修一條1050米長的路,甲、乙兩個工程隊想承建這項工程.經(jīng)了解得到以下信息(如表):工程隊每天修路的長度(米)單獨完成所需天數(shù)(天)每天所需費用(元)甲隊30n600乙隊mn﹣141160(1)甲隊單獨完成這項工程所需天數(shù)n=,乙隊每天修路的長度m=(米);(2)甲隊先修了x米之后,甲、乙兩隊一起修路,又用了y天完成這項工程(其中x,y為正整數(shù)).①當x=90時,求出乙隊修路的天數(shù);②求y與x之間的函數(shù)關(guān)系式(不用寫出x的取值范圍);③若總費用不超過22800元,求甲隊至少先修了多少米.23.(12分)某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,商場決定采取適當?shù)慕祪r措施.調(diào)查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應(yīng)降價多少元?24.某區(qū)域平面示意圖如圖,點O在河的一側(cè),AC和BC表示兩條互相垂直的公路.甲勘測員在A處測得點O位于北偏東45°,乙勘測員在B處測得點O位于南偏西73.7°,測得AC=840m,BC=500m.請求出點O到BC的距離.參考數(shù)據(jù):sin73.7°≈,cos73.7°≈,tan73.7°≈
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:設(shè)騎車學(xué)生的速度為xkm/h,則汽車的速度為2xkm/h,由題意得,.故選C.考點:由實際問題抽象出分式方程.2、B【解析】分析:由于比賽取前18名參加決賽,共有35名選手參加,根據(jù)中位數(shù)的意義分析即可.詳解:35個不同的成績按從小到大排序后,中位數(shù)及中位數(shù)之后的共有18個數(shù),故只要知道自己的成績和中位數(shù)就可以知道是否進入決賽了.故選B.點睛:本題考查了統(tǒng)計量的選擇,以及中位數(shù)意義,解題的關(guān)鍵是正確的求出這組數(shù)據(jù)的中位數(shù)3、A【解析】試題分析:過點C作CE⊥x軸于點E,過點D作DF⊥x軸于點F,如圖所示.設(shè)BD=a,則OC=3a.∵△AOB為邊長為1的等邊三角形,∴∠COE=∠DBF=10°,OB=1.在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE==a,∴點C(a,a).同理,可求出點D的坐標為(1﹣a,a).∵反比例函數(shù)(k≠0)的圖象恰好經(jīng)過點C和點D,∴k=a×a=(1﹣a)×a,∴a=,k=.故選A.4、D【解析】
根據(jù)k值的正負性分別判斷一次函數(shù)y=kx-k與反比例函數(shù)(k≠0)所經(jīng)過象限,即可得出答案.【詳解】解:有兩種情況,當k>0是時,一次函數(shù)y=kx-k的圖象經(jīng)過一、三、四象限,反比例函數(shù)(k≠0)的圖象經(jīng)過一、三象限;當k<0時,一次函數(shù)y=kx-k的圖象經(jīng)過一、二、四象限,反比例函數(shù)(k≠0)的圖象經(jīng)過二、四象限;根據(jù)選項可知,D選項滿足條件.故選D.【點睛】本題考查了一次函數(shù)、反比例函數(shù)的圖象.正確這兩種圖象所經(jīng)過的象限是解題的關(guān)鍵.5、A【解析】解:∵,∴反比例函數(shù)的圖象位于第二、四象限,在每個象限內(nèi),y隨x的增大而增大,∵點A(2,a)、B(3,b)在反比例函數(shù)的圖象上,∴a<b<0,故選A.6、C【解析】試題解析:觀察二次函數(shù)圖象可知:∴一次函數(shù)y=mx+n的圖象經(jīng)過第一、二、四象限,反比例函數(shù)的圖象在第二、四象限.故選D.7、C【解析】解:連接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵將△ABC繞點A逆時針旋轉(zhuǎn),使點C落在線段AB上的點E處,點B落在點D處,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故選C.點睛:本題考查了勾股定理和旋轉(zhuǎn)的基本性質(zhì),解決此類問題的關(guān)鍵是掌握旋轉(zhuǎn)的基本性質(zhì),特別是線段之間的關(guān)系.題目整體較為簡單,適合隨堂訓(xùn)練.8、A【解析】試題分析:充分利用圖形,直接從圖上得出x的取值范圍.由圖可知,當y<1時,x<-4,故選C.考點:本題考查的是一次函數(shù)的圖象點評:解答本題的關(guān)鍵是掌握在x軸下方的部分y<1,在x軸上方的部分y>1.9、A【解析】
延長A1A、B1B和C1C,從而得到P點位置,從而可得到P點坐標.【詳解】如圖,點P的坐標為(-4,-3).
故選A.【點睛】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應(yīng)頂點的連線相交于一點,對應(yīng)邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.10、D【解析】
連接AC、CF,根據(jù)正方形性質(zhì)求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面積的兩種表示法即可求得CH的長.【詳解】如圖,連接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF=,∵CH⊥AF,∴,即,∴CH=.故選D.【點睛】本題考查了正方形的性質(zhì)、勾股定理及直角三角形的面積,熟記各性質(zhì)并作輔助線構(gòu)造出直角三角形是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、4【解析】
過點C作CH⊥AB于H,利用解直角三角形的知識,分別求出AH、AC、BC的值,進而利用三線合一的性質(zhì)得出AA'的值,然后利用旋轉(zhuǎn)的性質(zhì)可判定△ACA'∽△BCB',繼而利用相似三角形的對應(yīng)邊成比例的性質(zhì)可得出BB'的值.【詳解】解:過點C作CH⊥AB于H,
∵在Rt△ABC中,∠C=90,cosA=,
∴AC=AB?cosA=6,BC=3,
在Rt△ACH中,AC=6,cosA=,
∴AH=AC?cosA=4,
由旋轉(zhuǎn)的性質(zhì)得,AC=A'C,BC=B'C,
∴△ACA'是等腰三角形,因此H也是AA'中點,
∴AA'=2AH=8,
又∵△BCB'和△ACA'都為等腰三角形,且頂角∠ACA'和∠BCB'都是旋轉(zhuǎn)角,
∴∠ACA'=∠BCB',
∴△ACA'∽△BCB',∴即,解得:BB'=4.故答案為:4.【點睛】此題考查了解直角三角形、旋轉(zhuǎn)的性質(zhì)、勾股定理、等腰三角形的性質(zhì)、相似三角形的判定與性質(zhì),解答本題的關(guān)鍵是得出△ACA'∽△BCB'.12、(或)【解析】
將拋物線化為頂點式,再按照“左加右減,上加下減”的規(guī)律平移即可.【詳解】解:化為頂點式得:,∴向右平移1個單位,再向下平移2個單位得:,化為一般式得:,故答案為:(或).【點睛】此題不僅考查了對圖象平移的理解,同時考查了學(xué)生將一般式轉(zhuǎn)化頂點式的能力.13、1【解析】原方程為3x2?6x+1=0,二次項系數(shù)化為1,得x2?2x=?,即x2?2x+1=?+1,所以(x?1)2=.故答案為:1,.14、.【解析】
作BK∥CF,使得BK=DE=2,作K關(guān)于直線CF的對稱點G交CF于點M,連接BG交CF于D',則,此時△BD'E'的周長最小,作交CF于點F,可知四邊形為平行四邊形及四邊形為矩形,在中,解直角三角形可知BH長,易得GK長,在Rt△BGK中,可得BG長,表示出△BD'E'的周長等量代換可得其值.【詳解】解:如圖,作BK∥CF,使得BK=DE=2,作K關(guān)于直線CF的對稱點G交CF于點M,連接BG交CF于D',則,此時△BD'E'的周長最小,作交CF于點F.由作圖知,四邊形為平行四邊形,由對稱可知,即四邊形為矩形在中,在Rt△BGK中,BK=2,GK=6,∴BG2,∴△BDE周長的最小值為BE'+D'E'+BD'=KD'+D'E'+BD'=D'E'+BD'+GD'=D'E'+BG=2+2.故答案為:2+2.【點睛】本題考查了最短距離問題,涉及了軸對稱、矩形及平行四邊形的性質(zhì)、解直角三角形、勾股定理,難度系數(shù)較大,利用兩點之間線段最短及軸對稱添加輔助線是解題的關(guān)鍵.15、1【解析】
要求所用細線的最短距離,需將長方體的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果.【詳解】解:將長方體展開,連接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根據(jù)兩點之間線段最短,AB′==1cm.故答案為1.考點:平面展開-最短路徑問題.16、3【解析】由題意得,=0,解得:x=3,經(jīng)檢驗的x=3是原方程的根.三、解答題(共8題,共72分)17、(1)45,,π;(2)滿足條件的∠QQ0D為45°或135°;(3)BP的長為或;(4)≤CQ≤7.【解析】
(1)由已知,可知△APQ為等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的長度;(2)分點Q在BD上方和下方的情況討論求解即可.(3)分別討論點Q在BD上方和下方的情況,利用切線性質(zhì),在由(2)用BP0表示BP,由射影定理計算即可;(4)由(2)可知,點Q在過點Qo,且與BD夾角為45°的線段EF上運動,有圖形可知,當點Q運動到點E時,CQ最長為7,再由垂線段最短,應(yīng)用面積法求CQ最小值.【詳解】解:(1)如圖,過點P做PE⊥AD于點E由已知,AP=PQ,∠APQ=90°∴△APQ為等腰直角三角形∴∠PAQ=∠PAB=45°設(shè)PE=x,則AE=x,DE=4﹣x∵PE∥AB∴△DEP∽△DAB∴=∴=解得x=∴PA=PE=∴弧AQ的長為?2π?=π.故答案為45,,π.(2)如圖,過點Q做QF⊥BD于點F由∠APQ=90°,∴∠APP0+∠QPD=90°∵∠P0AP+∠APP0=90°∴∠QPD=∠P0AP∵AP=PQ∴△APP0≌△PQF∴AP0=PF,P0P=QF∵AP0=P0Q0∴Q0D=P0P∴QF=FQ0∴∠QQ0D=45°.當點Q在BD的右下方時,同理可得∠PQ0Q=45°,此時∠QQ0D=135°,綜上所述,滿足條件的∠QQ0D為45°或135°.(3)如圖當點Q直線BD上方,當以點Q為圓心,BP為半徑的圓與直線BD相切時過點Q做QF⊥BD于點F,則QF=BP由(2)可知,PP0=BP∴BP0=BP∵AB=3,AD=4∴BD=5∵△ABP0∽△DBA∴AB2=BP0?BD∴9=BP×5∴BP=同理,當點Q位于BD下方時,可求得BP=故BP的長為或(4)由(2)可知∠QQ0D=45°則如圖,點Q在過點Q0,且與BD夾角為45°的線段EF上運動,當點P與點B重合時,點Q與點F重合,此時,CF=4﹣3=1當點P與點D重合時,點Q與點E重合,此時,CE=4+3=7∴EF===5過點C做CH⊥EF于點H由面積法可知CH===∴CQ的取值范圍為:≤CQ≤7【點睛】本題是幾何綜合題,考查了三角形全等、勾股定理、切線性質(zhì)以及三角形相似的相關(guān)知識,應(yīng)用了分類討論和數(shù)形結(jié)合的數(shù)學(xué)思想.18、燈桿AB的長度為2.3米.【解析】
過點A作AF⊥CE,交CE于點F,過點B作BG⊥AF,交AF于點G,則FG=BC=2.設(shè)AF=x知EF=AF=x、DF==,由DE=13.3求得x=11.4,據(jù)此知AG=AF﹣GF=1.4,再求得∠ABG=∠ABC﹣∠CBG=30°可得AB=2AG=2.3.【詳解】過點A作AF⊥CE,交CE于點F,過點B作BG⊥AF,交AF于點G,則FG=BC=2.由題意得:∠ADE=α,∠E=45°.設(shè)AF=x.∵∠E=45°,∴EF=AF=x.在Rt△ADF中,∵tan∠ADF=,∴DF==.∵DE=13.3,∴x+=13.3,∴x=11.4,∴AG=AF﹣GF=11.4﹣2=1.4.∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°,∴AB=2AG=2.3.答:燈桿AB的長度為2.3米.【點睛】本題主要考查解直角三角形﹣仰角俯角問題,解題的關(guān)鍵是結(jié)合題意構(gòu)建直角三角形并熟練掌握三角函數(shù)的定義及其應(yīng)用能力.19、【小題1】設(shè)所求拋物線的解析式為:,將A(1,0)、B(-3,0)、D(0,3)代入,得…………2分即所求拋物線的解析式為:……………3分【小題2】如圖④,在y軸的負半軸上取一點I,使得點F與點I關(guān)于x軸對稱,在x軸上取一點H,連接HF、HI、HG、GD、GE,則HF=HI…①設(shè)過A、E兩點的一次函數(shù)解析式為:y=kx+b(k≠0),∵點E在拋物線上且點E的橫坐標為-2,將x=-2,代入拋物線,得∴點E坐標為(-2,3)………………4分又∵拋物線圖象分別與x軸、y軸交于點A(1,0)、B(-3,0)、D(0,3),所以頂點C(-1,4)∴拋物線的對稱軸直線PQ為:直線x=-1,[中國教#&~@育出%版網(wǎng)]∴點D與點E關(guān)于PQ對稱,GD=GE……………②分別將點A(1,0)、點E(-2,3)代入y=kx+b,得:k+b=0,-2k+b=3解得:過A、E兩點的一次函數(shù)解析式為:y=-x+1∴當x=0時,y=1∴點F坐標為(0,1)……5分∴|DF|=2………③又∵點F與點I關(guān)于x軸對稱,∴點I坐標為(0,-1)∴|EI|=(-2-0)又∵要使四邊形DFHG的周長最小,由于DF是一個定值,∴只要使DG+GH+HI最小即可……6分由圖形的對稱性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有當EI為一條直線時,EG+GH+HI最小設(shè)過E(-2,3)、I(0,-1)兩點的函數(shù)解析式為:y=k分別將點E(-2,3)、點I(0,-1)代入y=k-2k1過I、E兩點的一次函數(shù)解析式為:y=-2x-1∴當x=-1時,y=1;當y=0時,x=-12∴點G坐標為(-1,1),點H坐標為(-12∴四邊形DFHG的周長最小為:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=2+2∴四邊形DFHG的周長最小為2+25【小題3】如圖⑤,由(2)可知,點A(1,0),點C(-1,4),設(shè)過A(1,0),點C(-1,4)兩點的函數(shù)解析式為:,得:k2解得:k2過A、C兩點的一次函數(shù)解析式為:y=-2x+2,當x=0時,y=2,即M的坐標為(0,2);由圖可知,△AOM為直角三角形,且OAOM要使,△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設(shè)P(,0),CM=,且∠CPM不可能為90°時,因此可分兩種情況討論;……………9分①當∠CMP=90°時,CM=,若則,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;……………………10分②當∠PCM=90°時,CM=,若則,可求出P(-3,0),則PM=,顯然不成立,若則,更不可能成立.……11分綜上所述,存在以P、C、M為頂點的三角形與△AOM相似,點P的坐標為(-4,0)12分【解析】(1)直接利用三點式求出二次函數(shù)的解析式;(2)若四邊形DFHG的周長最小,應(yīng)將邊長進行轉(zhuǎn)換,利用對稱性,要使四邊形DFHG的周長最小,由于DF是一個定值,只要使DG+GH+HI最小即可,由圖形的對稱性和,可知,HF=HI,GD=GE,DG+GH+HF=EG+GH+HI只有當EI為一條直線時,EG+GH+HI最小,即|EI|=(-2-0即邊形DFHG的周長最小為2+25(3)要使△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設(shè)P(,0),CM=,且∠CPM不可能為90°時,因此可分兩種情況討論,①當∠CMP=90°時,CM=,若則,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;②當∠PCM=90°時,CM=,若則,可求出P(-3,0),則PM=,顯然不成立,若則,更不可能成立.即求出以P、C、M為頂點的三角形與△AOM相似的P的坐標(-4,0)20、;5【解析】
原式=(-)?=?=?=a=2,原式=521、(1)2.1;(2)見解析;(3)x=2時,函數(shù)有最小值y=4.2【解析】
(1)通過作輔助線,應(yīng)用三角函數(shù)可求得HM+HN的值即為x=2時,y的值;(2)可在網(wǎng)格圖中直接畫出函數(shù)圖象;(3)由函數(shù)圖象可知函數(shù)的最小值.【詳解】(1)當點P運動到點H時,AH=3,作HN⊥AB于點N.∵在正方形ABCD中,AB=4cm,AC為對角線,AC上有一動點P,M是AB邊的中點,∴∠HAN=42°,∴AN=HN=AH?sin42°=3,∴HM,HB,∴HM+HN==≈≈2.122+2.834≈2.1.故答案為:2.1;(2)(3)根據(jù)函數(shù)圖象可知,當x=2時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《營養(yǎng)膳食與衛(wèi)生》課程標準
- 《行政職業(yè)能力測驗》山西省晉城市高平市2024年公務(wù)員考試模擬試題含解析
- 2024年農(nóng)研所上半年工作總結(jié)
- 《知情保密原則》課件
- 《華為戰(zhàn)略管理》課件
- 《車輛運行安全管理》課件
- 2019年高考語文試卷(新課標Ⅱ卷)(解析卷)
- 康復(fù)口腔科護士的職業(yè)發(fā)展
- 2023-2024年項目部安全管理人員安全培訓(xùn)考試題綜合題
- 2024企業(yè)主要負責人安全培訓(xùn)考試題附答案(綜合題)
- 安全培訓(xùn)機構(gòu)教師登記表
- 生活中的毒理學(xué)(衛(wèi)生毒理學(xué))智慧樹知到期末考試答案章節(jié)答案2024年寧波大學(xué)
- 氣管切開病人疑難病例討論
- 部編版八年級上冊語文期末試卷及參考答案可打印
- 洗胃的急救與護理
- 2024年紀檢監(jiān)察綜合業(yè)務(wù)知識題庫及答案(新)
- 師德師風考核實施方案
- 膀胱憩室護理查
- 2024年河南省水務(wù)規(guī)劃設(shè)計研究有限公司人才招聘筆試參考題庫附帶答案詳解
- 工程制圖知識要點
- 2024山東能源集團中級人才庫選拔高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
評論
0/150
提交評論