版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆福建省漳州市龍海市程溪中學(xué)高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若與互為共軛復(fù)數(shù),則()A.0 B.3 C.-1 D.42.在中,點(diǎn)為中點(diǎn),過點(diǎn)的直線與,所在直線分別交于點(diǎn),,若,,則的最小值為()A. B.2 C.3 D.3.如圖,在三棱錐中,平面,,,,,分別是棱,,的中點(diǎn),則異面直線與所成角的余弦值為A.0 B. C. D.14.若的展開式中的系數(shù)為150,則()A.20 B.15 C.10 D.255.根據(jù)如圖所示的程序框圖,當(dāng)輸入的值為3時(shí),輸出的值等于()A.1 B. C. D.6.已知函數(shù),要得到函數(shù)的圖象,只需將的圖象()A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度7.已知向量,是單位向量,若,則()A. B. C. D.8.設(shè),若函數(shù)在區(qū)間上有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.9.設(shè)、分別是定義在上的奇函數(shù)和偶函數(shù),且,則()A. B.0 C.1 D.310.當(dāng)輸入的實(shí)數(shù)時(shí),執(zhí)行如圖所示的程序框圖,則輸出的不小于103的概率是()A. B. C. D.11.二項(xiàng)式的展開式中,常數(shù)項(xiàng)為()A. B.80 C. D.16012.已知定義在上的奇函數(shù),其導(dǎo)函數(shù)為,當(dāng)時(shí),恒有.則不等式的解集為().A. B.C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的系數(shù)為__________.14.如圖,在一個(gè)倒置的高為2的圓錐形容器中,裝有深度為的水,再放入一個(gè)半徑為1的不銹鋼制的實(shí)心半球后,半球的大圓面、水面均與容器口相平,則的值為____________.15.已知函數(shù),若方程的解為,(),則_______;_______.16.已知是定義在上的奇函數(shù),當(dāng)時(shí),,則不等式的解集用區(qū)間表示為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在新中國(guó)成立70周年國(guó)慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達(dá)對(duì)祖國(guó)的熱愛之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圖中的曲線就是笛卡爾心型曲線,其極坐標(biāo)方程為(),M為該曲線上的任意一點(diǎn).(1)當(dāng)時(shí),求M點(diǎn)的極坐標(biāo);(2)將射線OM繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)與該曲線相交于點(diǎn)N,求的最大值.18.(12分)已知函數(shù),其中,.(1)函數(shù)的圖象能否與x軸相切?若能,求出實(shí)數(shù)a;若不能,請(qǐng)說明理由.(2)若在處取得極大值,求實(shí)數(shù)a的取值范圍.19.(12分)數(shù)列滿足.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),為的前n項(xiàng)和,求證:.20.(12分)已知曲線的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以軸正半軸為極軸并取相同的單位長(zhǎng)度建立極坐標(biāo)系.(1)求曲線的極坐標(biāo)方程,并說明其表示什么軌跡;(2)若直線的極坐標(biāo)方程為,求曲線上的點(diǎn)到直線的最大距離.21.(12分)已知數(shù)列滿足:對(duì)一切成立.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.22.(10分)已知拋物線上一點(diǎn)到焦點(diǎn)的距離為2,(1)求的值與拋物線的方程;(2)拋物線上第一象限內(nèi)的動(dòng)點(diǎn)在點(diǎn)右側(cè),拋物線上第四象限內(nèi)的動(dòng)點(diǎn),滿足,求直線的斜率范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
計(jì)算,由共軛復(fù)數(shù)的概念解得即可.【詳解】,又由共軛復(fù)數(shù)概念得:,.故選:C【點(diǎn)睛】本題主要考查了復(fù)數(shù)的運(yùn)算,共軛復(fù)數(shù)的概念.2、B【解析】
由,,三點(diǎn)共線,可得,轉(zhuǎn)化,利用均值不等式,即得解.【詳解】因?yàn)辄c(diǎn)為中點(diǎn),所以,又因?yàn)?,,所以.因?yàn)?,,三點(diǎn)共線,所以,所以,當(dāng)且僅當(dāng)即時(shí)等號(hào)成立,所以的最小值為1.故選:B【點(diǎn)睛】本題考查了三點(diǎn)共線的向量表示和利用均值不等式求最值,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.3、B【解析】
根據(jù)題意可得平面,,則即異面直線與所成的角,連接CG,在中,,易得,所以,所以,故選B.4、C【解析】
通過二項(xiàng)式展開式的通項(xiàng)分析得到,即得解.【詳解】由已知得,故當(dāng)時(shí),,于是有,則.故選:C【點(diǎn)睛】本題主要考查二項(xiàng)式展開式的通項(xiàng)和系數(shù)問題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.5、C【解析】
根據(jù)程序圖,當(dāng)x<0時(shí)結(jié)束對(duì)x的計(jì)算,可得y值.【詳解】由題x=3,x=x-2=3-1,此時(shí)x>0繼續(xù)運(yùn)行,x=1-2=-1<0,程序運(yùn)行結(jié)束,得,故選C.【點(diǎn)睛】本題考查程序框圖,是基礎(chǔ)題.6、A【解析】
根據(jù)函數(shù)圖像平移原則,即可容易求得結(jié)果.【詳解】因?yàn)?,故要得到,只需將向左平移個(gè)單位長(zhǎng)度.故選:A.【點(diǎn)睛】本題考查函數(shù)圖像平移前后解析式的變化,屬基礎(chǔ)題.7、C【解析】
設(shè),根據(jù)題意求出的值,代入向量夾角公式,即可得答案;【詳解】設(shè),,是單位向量,,,,聯(lián)立方程解得:或當(dāng)時(shí),;當(dāng)時(shí),;綜上所述:.故選:C.【點(diǎn)睛】本題考查向量的模、夾角計(jì)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時(shí)注意的兩種情況.8、D【解析】令,可得.在坐標(biāo)系內(nèi)畫出函數(shù)的圖象(如圖所示).當(dāng)時(shí),.由得.設(shè)過原點(diǎn)的直線與函數(shù)的圖象切于點(diǎn),則有,解得.所以當(dāng)直線與函數(shù)的圖象切時(shí).又當(dāng)直線經(jīng)過點(diǎn)時(shí),有,解得.結(jié)合圖象可得當(dāng)直線與函數(shù)的圖象有3個(gè)交點(diǎn)時(shí),實(shí)數(shù)的取值范圍是.即函數(shù)在區(qū)間上有三個(gè)零點(diǎn)時(shí),實(shí)數(shù)的取值范圍是.選D.點(diǎn)睛:已知函數(shù)零點(diǎn)的個(gè)數(shù)(方程根的個(gè)數(shù))求參數(shù)值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解,對(duì)于一些比較復(fù)雜的函數(shù)的零點(diǎn)問題常用此方法求解.9、C【解析】
先根據(jù)奇偶性,求出的解析式,令,即可求出?!驹斀狻恳?yàn)椤⒎謩e是定義在上的奇函數(shù)和偶函數(shù),,用替換,得,化簡(jiǎn)得,即令,所以,故選C?!军c(diǎn)睛】本題主要考查函數(shù)性質(zhì)奇偶性的應(yīng)用。10、A【解析】
根據(jù)循環(huán)結(jié)構(gòu)的運(yùn)行,直至不滿足條件退出循環(huán)體,求出的范圍,利用幾何概型概率公式,即可求出結(jié)論.【詳解】程序框圖共運(yùn)行3次,輸出的的范圍是,所以輸出的不小于103的概率為.故選:A.【點(diǎn)睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果、幾何概型的概率,模擬程序運(yùn)行是解題的關(guān)鍵,屬于基礎(chǔ)題.11、A【解析】
求出二項(xiàng)式的展開式的通式,再令的次數(shù)為零,可得結(jié)果.【詳解】解:二項(xiàng)式展開式的通式為,令,解得,則常數(shù)項(xiàng)為.故選:A.【點(diǎn)睛】本題考查二項(xiàng)式定理指定項(xiàng)的求解,關(guān)鍵是熟練應(yīng)用二項(xiàng)展開式的通式,是基礎(chǔ)題.12、D【解析】
先通過得到原函數(shù)為增函數(shù)且為偶函數(shù),再利用到軸距離求解不等式即可.【詳解】構(gòu)造函數(shù),則由題可知,所以在時(shí)為增函數(shù);由為奇函數(shù),為奇函數(shù),所以為偶函數(shù);又,即即又為開口向上的偶函數(shù)所以,解得或故選:D【點(diǎn)睛】此題考查根據(jù)導(dǎo)函數(shù)構(gòu)造原函數(shù),偶函數(shù)解不等式等知識(shí)點(diǎn),屬于較難題目.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】
分別用1和進(jìn)行分類討論即可【詳解】當(dāng)?shù)谝粋€(gè)因式取1時(shí),第二個(gè)因式應(yīng)取含的項(xiàng),則對(duì)應(yīng)系數(shù)為:;當(dāng)?shù)谝粋€(gè)因式取時(shí),第二個(gè)因式應(yīng)取含的項(xiàng),則對(duì)應(yīng)系數(shù)為:;故的展開式中的系數(shù)為.故答案為:3【點(diǎn)睛】本題考查二項(xiàng)式定理中具體項(xiàng)對(duì)應(yīng)系數(shù)的求解,屬于基礎(chǔ)題14、【解析】
由已知可得到圓錐的底面半徑,再由圓錐的體積等于半球的體積與水的體積之和即可建立方程.【詳解】設(shè)圓錐的底面半徑為,體積為,半球的體積為,水(小圓錐)的體積為,如圖則,所以,,解得,所以,,,由,得,解得.故答案為:【點(diǎn)睛】本題考查圓錐的體積、球的體積的計(jì)算,考查學(xué)生空間想象能力與計(jì)算能力,是一道中檔題.15、【解析】
求出在上的對(duì)稱軸,依據(jù)對(duì)稱性可得的值;由可得,依據(jù)可求出的值.【詳解】解:令,解得因?yàn)?,所以關(guān)于對(duì)稱.則.由,則由可知,,又因?yàn)?,所以,則,即故答案為:;.【點(diǎn)睛】本題考查了三角函數(shù)的對(duì)稱軸,考查了誘導(dǎo)公式,考查了同角三角函數(shù)的基本關(guān)系.本題的易錯(cuò)點(diǎn)在于沒有正確判斷的取值范圍,導(dǎo)致求出.在求的對(duì)稱軸時(shí),常用整體代入法,即令進(jìn)行求解.16、【解析】設(shè),則,由題意可得故當(dāng)時(shí),由不等式,可得,或求得,或故答案為(三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)點(diǎn)M的極坐標(biāo)為或(2)【解析】
(1)令,由此求得的值,進(jìn)而求得點(diǎn)的極坐標(biāo).(2)設(shè)出兩點(diǎn)的極坐標(biāo),利用勾股定理求得的表達(dá)式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設(shè)點(diǎn)M在極坐標(biāo)系中的坐標(biāo),由,得,∵∴或,所以點(diǎn)M的極坐標(biāo)為或(2)由題意可設(shè),.由,得,.故時(shí),的最大值為.【點(diǎn)睛】本小題主要考查極坐標(biāo)的求法,考查極坐標(biāo)下兩點(diǎn)間距離的計(jì)算以及距離最值的求法,屬于中檔題.18、(1)答案見解析(2)【解析】
(1)假設(shè)函數(shù)的圖象與x軸相切于,根據(jù)相切可得方程組,看方程是否有解即可;(2)求出的導(dǎo)數(shù),設(shè)(),根據(jù)函數(shù)的單調(diào)性及在處取得極大值求出a的范圍即可.【詳解】(1)函數(shù)的圖象不能與x軸相切,理由若下:.假設(shè)函數(shù)的圖象與x軸相切于則即顯然,,代入中得,無實(shí)數(shù)解.故函數(shù)的圖象不能與x軸相切.(2)(),,設(shè)(),恒大于零.在上單調(diào)遞增.又,,,∴存在唯一,使,且時(shí),時(shí),①當(dāng)時(shí),恒成立,在單調(diào)遞增,無極值,不合題意.②當(dāng)時(shí),可得當(dāng)時(shí),,當(dāng)時(shí),.所以在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,所以在處取得極小值,不合題意.③當(dāng)時(shí),可得當(dāng)時(shí),,當(dāng)時(shí),.所以在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,所以在處取得極大值,符合題意.此時(shí)由得即,綜上可知,實(shí)數(shù)a的取值范圍為.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.19、(1)(2)證明見解析【解析】
(1)利用與的關(guān)系即可求解.(2)利用裂項(xiàng)求和法即可求解.【詳解】解析:(1)當(dāng)時(shí),;當(dāng),,可得,又∵當(dāng)時(shí)也成立,;(2),【點(diǎn)睛】本題主要考查了與的關(guān)系、裂項(xiàng)求和法,屬于基礎(chǔ)題.20、(1),表示圓心為,半徑為的圓;(2)【解析】
(1)根據(jù)參數(shù)得到直角坐標(biāo)系方程,再轉(zhuǎn)化為極坐標(biāo)方程得到答案.(2)直線方程為,計(jì)算圓心到直線的距離加上半徑得到答案.【詳解】(1),即,化簡(jiǎn)得到:.即,表示圓心為,半徑為的圓.(2),即,圓心到直線的距離為.故曲線上的點(diǎn)到直線的最大距離為.【點(diǎn)睛】本題考查了參數(shù)方程,極坐標(biāo)方程,直線和圓的距離的最值,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.21、(1);(2)【解析】
(1)先通過求得,再由得,和條件中的式子作差可得答案;(2)變形可得,通過裂項(xiàng)求和法可得答案.【詳解】(1)①,當(dāng)時(shí),,,當(dāng)時(shí),②,①②得:,,適合,故;(2),.【點(diǎn)睛】本題考查
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度農(nóng)業(yè)廢棄物資源化利用化肥農(nóng)藥研發(fā)合同4篇
- 二零二五年度古籍文物儲(chǔ)藏保護(hù)合同3篇
- 2025年度個(gè)人戶外探險(xiǎn)保險(xiǎn)合同樣本4篇
- 2025年度鋼材現(xiàn)貨購(gòu)銷及倉(cāng)儲(chǔ)服務(wù)合同
- 2025年度新型城鎮(zhèn)化項(xiàng)目不動(dòng)產(chǎn)地皮開發(fā)合作協(xié)議3篇
- 2025年度內(nèi)資股協(xié)議轉(zhuǎn)讓農(nóng)業(yè)產(chǎn)業(yè)化項(xiàng)目合作合同4篇
- 2025年度電商平臺(tái)內(nèi)容審核與版權(quán)保護(hù)合同4篇
- 2025年度苗木種植與生物多樣性保護(hù)服務(wù)合同4篇
- 2025年度木材產(chǎn)業(yè)技術(shù)創(chuàng)新合作開發(fā)協(xié)議3篇
- 2025年度年薪制勞動(dòng)合同法實(shí)施指南及員工福利保障2篇
- 2023年成都市青白江區(qū)村(社區(qū))“兩委”后備人才考試真題
- 2024中考復(fù)習(xí)必背初中英語單詞詞匯表(蘇教譯林版)
- 海員的營(yíng)養(yǎng)-1315醫(yī)學(xué)營(yíng)養(yǎng)霍建穎等講解
- 《現(xiàn)代根管治療術(shù)》課件
- 肩袖損傷的護(hù)理查房課件
- 2023屆北京市順義區(qū)高三二模數(shù)學(xué)試卷
- 公司差旅費(fèi)報(bào)銷單
- 我國(guó)全科醫(yī)生培訓(xùn)模式
- 2021年上海市楊浦區(qū)初三一模語文試卷及參考答案(精校word打印版)
- 八年級(jí)上冊(cè)英語完形填空、閱讀理解100題含參考答案
- 八年級(jí)物理下冊(cè)功率課件
評(píng)論
0/150
提交評(píng)論