版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
直線和圓的方程——講義第01講直線的傾斜角與斜率【知識(shí)點(diǎn)梳理】知識(shí)點(diǎn)一:直線的傾斜角平面直角坐標(biāo)系中,對(duì)于一條與軸相交的直線,如果把軸繞著交點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)到和直線重合時(shí)所轉(zhuǎn)的最小正角記為,則叫做直線的傾斜角.規(guī)定:當(dāng)直線和軸平行或重合時(shí),直線傾斜角為,所以,傾斜角的范圍是.知識(shí)點(diǎn)詮釋:1.要清楚定義中含有的三個(gè)條件①直線向上方向;②軸正向;③小于的角.2.從運(yùn)動(dòng)變化觀點(diǎn)來(lái)看,直線的傾斜角是由軸按逆時(shí)針?lè)较蛐D(zhuǎn)到與直線重合時(shí)所成的角.3.傾斜角的范圍是.當(dāng)時(shí),直線與x軸平行或與x軸重合.4.直線的傾斜角描述了直線的傾斜程度,每一條直線都有唯一的傾斜角和它對(duì)應(yīng).5.已知直線的傾斜角不能確定直線的位置,但是,直線上的一點(diǎn)和這條直線的傾斜角可以唯一確定直線的位置.知識(shí)點(diǎn)二:直線的斜率1.定義:傾斜角不是的直線,它的傾斜角的正切叫做這條直線的斜率,常用表示,即.知識(shí)點(diǎn)詮釋:(1)當(dāng)直線與x軸平行或重合時(shí),,;(2)直線與x軸垂直時(shí),,k不存在.由此可知,一條直線的傾斜角一定存在,但是斜率k不一定存在.2.直線的傾斜角與斜率之間的關(guān)系由斜率的定義可知,當(dāng)在范圍內(nèi)時(shí),直線的斜率大于零;當(dāng)在范圍內(nèi)時(shí),直線的斜率小于零;當(dāng)時(shí),直線的斜率為零;當(dāng)時(shí),直線的斜率不存在.直線的斜率與直線的傾斜角(除外)為一一對(duì)應(yīng)關(guān)系,且在和范圍內(nèi)分別與傾斜角的變化方向一致,即傾斜角越大則斜率越大,反之亦然.因此若需在或范圍內(nèi)比較傾斜角的大小只需比較斜率的大小即可,反之亦然.知識(shí)點(diǎn)三:斜率公式已知點(diǎn)、,且與軸不垂直,過(guò)兩點(diǎn)、的直線的斜率公式.知識(shí)點(diǎn)詮釋:1.對(duì)于上面的斜率公式要注意下面五點(diǎn):(1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角,直線與軸垂直;(2)與、的順序無(wú)關(guān),即,和,在公式中的前后次序可以同時(shí)交換,但分子與分母不能交換;(3)斜率可以不通過(guò)傾斜角而直接由直線上兩點(diǎn)的坐標(biāo)求得;(4)當(dāng)時(shí),斜率,直線的傾斜角,直線與軸平行或重合;(5)求直線的傾斜角可以由直線上兩點(diǎn)的坐標(biāo)先求斜率而得到.2.斜率公式的用途:由公式可解決下列類型的問(wèn)題:(1)由、點(diǎn)的坐標(biāo)求的值;(2)已知及中的三個(gè)量可求第四個(gè)量;(3)已知及、的橫坐標(biāo)(或縱坐標(biāo))可求;(4)證明三點(diǎn)共線.知識(shí)點(diǎn)四:兩直線平行的條件設(shè)兩條不重合的直線的斜率分別為.若,則與的傾斜角與相等.由,可得,即.因此,若,則.反之,若,則.知識(shí)點(diǎn)詮釋:1.公式成立的前提條件是①兩條直線的斜率存在分別為;②不重合;2.當(dāng)兩條直線的斜率都不存在且不重合時(shí),的傾斜角都是,則.知識(shí)點(diǎn)五:兩直線垂直的條件設(shè)兩條直線的斜率分別為.若,則.知識(shí)點(diǎn)詮釋:1.公式成立的前提條件是兩條直線的斜率都存在;2.當(dāng)一條垂直直線的斜率不存在,另一條直線的斜率為0時(shí),兩條直線也垂直.第02講直線的方程【知識(shí)點(diǎn)梳理】知識(shí)點(diǎn)一:直線的點(diǎn)斜式方程方程由直線上一定點(diǎn)及其斜率決定,我們把叫做直線的點(diǎn)斜式方程,簡(jiǎn)稱點(diǎn)斜式.知識(shí)點(diǎn)詮釋:1.點(diǎn)斜式方程是由直線上一點(diǎn)和斜率確定的,點(diǎn)斜式的前提是直線的斜率存在.點(diǎn)斜式不能表示平行于y軸的直線,即斜率不存在的直線;2.當(dāng)直線的傾斜角為時(shí),直線方程為;3.當(dāng)直線傾斜角為時(shí),直線沒(méi)有斜率,它的方程不能用點(diǎn)斜式表示.這時(shí)直線方程為:.4.表示直線去掉一個(gè)點(diǎn);表示一條直線.知識(shí)點(diǎn)二:直線的斜截式方程如果直線的斜率為,且與軸的交點(diǎn)為,根據(jù)直線的點(diǎn)斜式方程可得,即.我們把直線與軸的交點(diǎn)的縱坐標(biāo)叫做直線在軸上的截距,方程由直線的斜率與它在軸上的截距確定,所以方程叫做直線的斜截式方程,簡(jiǎn)稱斜截式.知識(shí)點(diǎn)詮釋:1.b為直線在y軸上截距,截距可以取一切實(shí)數(shù),即可以為正數(shù)、零、負(fù)數(shù);距離必須大于或等于零;2.斜截式方程可由過(guò)點(diǎn)的點(diǎn)斜式方程得到;3.當(dāng)時(shí),斜截式方程就是一次函數(shù)的表示形式.4.斜截式的前提是直線的斜率存在.斜截式不能表示平行于y軸的直線,即斜率不存在的直線.5.斜截式是點(diǎn)斜式的特殊情況,在方程中,是直線的斜率,是直線在軸上的截距.知識(shí)點(diǎn)三:直線的兩點(diǎn)式方程經(jīng)過(guò)兩點(diǎn)(其中)的直線方程為,稱這個(gè)方程為直線的兩點(diǎn)式方程,簡(jiǎn)稱兩點(diǎn)式.知識(shí)點(diǎn)詮釋:1.這個(gè)方程由直線上兩點(diǎn)確定;2.當(dāng)直線沒(méi)有斜率()或斜率為時(shí),不能用兩點(diǎn)式求出它的方程.3.直線方程的表示與選擇的順序無(wú)關(guān).4.在應(yīng)用兩點(diǎn)式求直線方程時(shí),往往把分式形式通過(guò)交叉相乘轉(zhuǎn)化為整式形式,從而得到的方程中,包含了或的情況,但此轉(zhuǎn)化過(guò)程不是一個(gè)等價(jià)的轉(zhuǎn)化過(guò)程,不能因此忽略由、和、是否相等引起的討論.要避免討論,可直接假設(shè)兩點(diǎn)式的整式形式.知識(shí)點(diǎn)四:直線的截距式方程若直線與軸的交點(diǎn)為,與y軸的交點(diǎn)為,其中,則過(guò)AB兩點(diǎn)的直線方程為,這個(gè)方程稱為直線的截距式方程.a叫做直線在x軸上的截距,b叫做直線在y軸上的截距.知識(shí)點(diǎn)詮釋:1.截距式的條件是,即截距式方程不能表示過(guò)原點(diǎn)的直線以及不能表示與坐標(biāo)軸平行的直線.2.求直線在坐標(biāo)軸上的截距的方法:令x=0得直線在y軸上的截距;令y=0得直線在x軸上的截距.知識(shí)點(diǎn)五:直線方程幾種表達(dá)方式的選取在一般情況下,使用斜截式比較方便,這是因?yàn)樾苯厥街恍枰獌蓚€(gè)獨(dú)立變數(shù),而點(diǎn)斜式需要三個(gè)獨(dú)立變數(shù).在求直線方程時(shí),要根據(jù)給出的條件采用適當(dāng)?shù)男问剑话愕?,已知一點(diǎn)的坐標(biāo),求過(guò)這點(diǎn)的直線,通常采用點(diǎn)斜式,再由其他條件確定斜率;已知直線的斜率,常用斜截式,再由其他條件確定在y軸上的截距;已知截距或兩點(diǎn)選擇截距式或兩點(diǎn)式.從結(jié)論上看,若求直線與坐標(biāo)軸所圍成的三角形的面積或周長(zhǎng),則選擇截距式求解較方便,但不論選用哪一種形式,都要注意各自的限制條件,以免遺漏.知識(shí)點(diǎn)六:直線方程的一般式關(guān)于x和y的一次方程都表示一條直線.我們把方程寫為,這個(gè)方程(其中A、B不全為零)叫做直線方程的一般式.知識(shí)點(diǎn)詮釋:1.A、B不全為零才能表示一條直線,若A、B全為零則不能表示一條直線.當(dāng)時(shí),方程可變形為,它表示過(guò)點(diǎn),斜率為的直線.當(dāng),時(shí),方程可變形為,即,它表示一條與軸垂直的直線.由上可知,關(guān)于、的二元一次方程,它都表示一條直線.2.在平面直角坐標(biāo)系中,一個(gè)關(guān)于、的二元一次方程對(duì)應(yīng)著唯一的一條直線,反過(guò)來(lái),一條直線可以對(duì)應(yīng)著無(wú)數(shù)個(gè)關(guān)于、的一次方程.知識(shí)點(diǎn)七:直線方程的不同形式間的關(guān)系名稱方程的形式常數(shù)的幾何意義適用范圍點(diǎn)斜式是直線上一定點(diǎn),是斜率不垂直于軸斜截式是斜率,是直線在y軸上的截距不垂直于軸兩點(diǎn)式,是直線上兩定點(diǎn)不垂直于軸和軸截距式是直線在x軸上的非零截距,是直線在y軸上的非零截距不垂直于軸和軸,且不過(guò)原點(diǎn)一般式、、為系數(shù)任何位置的直線直線方程的五種形式的比較如下表:知識(shí)點(diǎn)詮釋:在直線方程的各種形式中,點(diǎn)斜式與斜截式是兩種常用的直線方程形式,要注意在這兩種形式中都要求直線存在斜率,兩點(diǎn)式是點(diǎn)斜式的特例,其限制條件更多,應(yīng)用時(shí)若采用的形式,即可消除局限性.截距式是兩點(diǎn)式的特例,在使用截距式時(shí),首先要判斷是否滿足“直線在兩坐標(biāo)軸上的截距存在且不為零”這一條件.直線方程的一般式包含了平面上的所有直線形式.一般式?;癁樾苯厥脚c截距式.若一般式化為點(diǎn)斜式,兩點(diǎn)式,由于取點(diǎn)不同,得到的方程也不同.知識(shí)點(diǎn)八:直線方程的綜合應(yīng)用1.已知所求曲線是直線時(shí),用待定系數(shù)法求.2.根據(jù)題目所給條件,選擇適當(dāng)?shù)闹本€方程的形式,求出直線方程.對(duì)于兩直線的平行與垂直,直線方程的形式不同,考慮的方向也不同.(1)從斜截式考慮已知直線,,;于是與直線平行的直線可以設(shè)為;垂直的直線可以設(shè)為.(2)從一般式考慮:且或,記憶式()與重合,,,于是與直線平行的直線可以設(shè)為;垂直的直線可以設(shè)為.第03講直線的交點(diǎn)坐標(biāo)與距離公式【知識(shí)點(diǎn)梳理】知識(shí)點(diǎn)一:直線的交點(diǎn)求兩直線與的交點(diǎn)坐標(biāo),只需求兩直線方程聯(lián)立所得方程組的解即可.若有,則方程組有無(wú)窮多個(gè)解,此時(shí)兩直線重合;若有,則方程組無(wú)解,此時(shí)兩直線平行;若有,則方程組有唯一解,此時(shí)兩直線相交,此解即兩直線交點(diǎn)的坐標(biāo).知識(shí)點(diǎn)詮釋:求兩直線的交點(diǎn)坐標(biāo)實(shí)際上就是解方程組,看方程組解的個(gè)數(shù).知識(shí)點(diǎn)二:過(guò)兩條直線交點(diǎn)的直線系方程一般地,具有某種共同屬性的一類直線的集合稱為直線系,它的方程叫做直線系方程,直線系方程中除含有以外,還有根據(jù)具體條件取不同值的變量,稱為參變量,簡(jiǎn)稱參數(shù).由于參數(shù)取法不同,從而得到不同的直線系.過(guò)兩直線的交點(diǎn)的直線系方程:經(jīng)過(guò)兩直線,交點(diǎn)的直線方程為,其中是待定系數(shù).在這個(gè)方程中,無(wú)論取什么實(shí)數(shù),都得不到,因此它不能表示直線.知識(shí)點(diǎn)三:兩點(diǎn)間的距離公式兩點(diǎn)間的距離公式為.知識(shí)點(diǎn)詮釋:此公式可以用來(lái)求解平面上任意兩點(diǎn)之間的距離,它是所有求距離問(wèn)題的基礎(chǔ),點(diǎn)到直線的距離和兩平行直線之間的距離均可轉(zhuǎn)化為兩點(diǎn)之間的距離來(lái)解決.另外在下一章圓的標(biāo)準(zhǔn)方程的推導(dǎo)、直線與圓、圓與圓的位置關(guān)系的判斷等內(nèi)容中都有廣泛應(yīng)用,需熟練掌握.知識(shí)點(diǎn)四:點(diǎn)到直線的距離公式點(diǎn)到直線的距離為.知識(shí)點(diǎn)詮釋:(1)點(diǎn)到直線的距離為直線上所有的點(diǎn)到已知點(diǎn)的距離中最小距離;(2)使用點(diǎn)到直線的距離公式的前提條件是:把直線方程先化為一般式方程;(3)此公式常用于求三角形的高、兩平行線間的距離及下一章中直線與圓的位置關(guān)系的判斷等.知識(shí)點(diǎn)五:兩平行線間的距離本類問(wèn)題常見(jiàn)的有兩種解法:①轉(zhuǎn)化為點(diǎn)到直線的距離問(wèn)題,在任一條直線上任取一點(diǎn),此點(diǎn)到另一條直線的距離即為兩直線之間的距離;②距離公式:直線與直線的距離為.知識(shí)點(diǎn)詮釋:(1)兩條平行線間的距離,可以看作在其中一條直線上任取一點(diǎn),這個(gè)點(diǎn)到另一條直線的距離,此點(diǎn)一般可以取直線上的特殊點(diǎn),也可以看作是兩條直線上各取一點(diǎn),這兩點(diǎn)間的最短距離;(2)利用兩條平行直線間的距離公式時(shí),一定先將兩直線方程化為一般形式,且兩條直線中,的系數(shù)分別是相同的以后,才能使用此公式.第04講圓的方程【知識(shí)點(diǎn)梳理】知識(shí)點(diǎn)一:圓的標(biāo)準(zhǔn)方程,其中為圓心,為半徑.知識(shí)點(diǎn)詮釋:(1)如果圓心在坐標(biāo)原點(diǎn),這時(shí),圓的方程就是.有關(guān)圖形特征與方程的轉(zhuǎn)化:如:圓心在x軸上:;圓與y軸相切時(shí):;圓與x軸相切時(shí):;與坐標(biāo)軸相切時(shí):;過(guò)原點(diǎn):(2)圓的標(biāo)準(zhǔn)方程圓心為,半徑為,它顯現(xiàn)了圓的幾何特點(diǎn).(3)標(biāo)準(zhǔn)方程的優(yōu)點(diǎn)在于明確指出了圓心和半徑.由圓的標(biāo)準(zhǔn)方程可知,確定一個(gè)圓的方程,只需要a、b、r這三個(gè)獨(dú)立參數(shù),因此,求圓的標(biāo)準(zhǔn)方程常用定義法和待定系數(shù)法.知識(shí)點(diǎn)二:點(diǎn)和圓的位置關(guān)系如果圓的標(biāo)準(zhǔn)方程為,圓心為,半徑為,則有(1)若點(diǎn)在圓上(2)若點(diǎn)在圓外(3)若點(diǎn)在圓內(nèi)知識(shí)點(diǎn)三:圓的一般方程當(dāng)時(shí),方程叫做圓的一般方程.為圓心,為半徑.知識(shí)點(diǎn)詮釋:由方程得(1)當(dāng)時(shí),方程只有實(shí)數(shù)解.它表示一個(gè)點(diǎn).(2)當(dāng)時(shí),方程沒(méi)有實(shí)數(shù)解,因而它不表示任何圖形.(3)當(dāng)時(shí),可以看出方程表示以為圓心,為半徑的圓.知識(shí)點(diǎn)四:用待定系數(shù)法求圓的方程的步驟求圓的方程常用“待定系數(shù)法”.用“待定系數(shù)法”求圓的方程的大致步驟是:(1)根據(jù)題意,選擇標(biāo)準(zhǔn)方程或一般方程.(2)根據(jù)已知條件,建立關(guān)于或的方程組.(3)解方程組,求出或的值,并把它們代入所設(shè)的方程中去,就得到所求圓的方程.知識(shí)點(diǎn)五:軌跡方程求符合某種條件的動(dòng)點(diǎn)的軌跡方程,實(shí)質(zhì)上就是利用題設(shè)中的幾何條件,通過(guò)“坐標(biāo)法”將其轉(zhuǎn)化為關(guān)于變量之間的方程.1.當(dāng)動(dòng)點(diǎn)滿足的幾何條件易于“坐標(biāo)化”時(shí),常采用直接法;當(dāng)動(dòng)點(diǎn)滿足的條件符合某一基本曲線的定義(如圓)時(shí),常采用定義法;當(dāng)動(dòng)點(diǎn)隨著另一個(gè)在已知曲線上的動(dòng)點(diǎn)運(yùn)動(dòng)時(shí),可采用代入法(或稱相關(guān)點(diǎn)法).2.求軌跡方程時(shí),一要區(qū)分“軌跡”與“軌跡方程”;二要注意檢驗(yàn),去掉不合題設(shè)條件的點(diǎn)或線等.3.求軌跡方程的步驟:(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,用表示軌跡(曲線)上任一點(diǎn)的坐標(biāo);(2)列出關(guān)于的方程;(3)把方程化為最簡(jiǎn)形式;(4)除去方程中的瑕點(diǎn)(即不符合題意的點(diǎn));(5)作答.第05講直線與圓、圓與圓的位置關(guān)系【知識(shí)點(diǎn)梳理】知識(shí)點(diǎn)一:直線與圓的位置關(guān)系1.直線與圓的位置關(guān)系:(1)直線與圓相交,有兩個(gè)公共點(diǎn);(2)直線與圓相切,只有一個(gè)公共點(diǎn);(3)直線與圓相離,沒(méi)有公共點(diǎn).2.直線與圓的位置關(guān)系的判定:(1)代數(shù)法:判斷直線與圓C的方程組成的方程組是否有解.如果有解,直線與圓C有公共點(diǎn).有兩組實(shí)數(shù)解時(shí),直線與圓C相交;有一組實(shí)數(shù)解時(shí),直線與圓C相切;無(wú)實(shí)數(shù)解時(shí),直線與圓C相離.(2)幾何法:由圓C的圓心到直線的距離與圓的半徑的關(guān)系判斷:當(dāng)時(shí),直線與圓C相交;當(dāng)時(shí),直線與圓C相切;當(dāng)時(shí),直線與圓C相離.知識(shí)點(diǎn)詮釋:(1)當(dāng)直線和圓相切時(shí),求切線方程,一般要用到圓心到直線的距離等于半徑,記住常見(jiàn)切線方程,可提高解題速度;求切線長(zhǎng),一般要用到切線長(zhǎng)、圓的半徑、圓外點(diǎn)與圓心連線構(gòu)成的直角三角形,由勾股定理解得.(2)當(dāng)直線和圓相交時(shí),有關(guān)弦長(zhǎng)的問(wèn)題,要用到弦心距、半徑和半弦構(gòu)成的直角三角形,也是通過(guò)勾股定理解得,有時(shí)還用到垂徑定理.(3)當(dāng)直線和圓相離時(shí),常討論圓上的點(diǎn)到直線的距離問(wèn)題,通常畫圖,利用數(shù)形結(jié)合來(lái)解決.知識(shí)點(diǎn)二:圓的切線方程的求法1.點(diǎn)在圓上,如圖.法一:利用切線的斜率與圓心和該點(diǎn)連線的斜率的乘積等于,即.法二:圓心到直線的距離等于半徑.2.點(diǎn)在圓外,則設(shè)切線方程:,變成一般式:,因?yàn)榕c圓相切,利用圓心到直線的距離等于半徑,解出.知識(shí)點(diǎn)詮釋:因?yàn)榇藭r(shí)點(diǎn)在圓外,所以切線一定有兩條,即方程一般是兩個(gè)根,若方程只有一個(gè)根,則還有一條切線的斜率不存在,務(wù)必要把這條切線補(bǔ)上.常見(jiàn)圓的切線方程:(1)過(guò)圓上一點(diǎn)的切線方程是;(2)過(guò)圓上一點(diǎn)的切線方程是.知識(shí)點(diǎn)三:求直線被圓截得的弦長(zhǎng)的方法1.應(yīng)用圓中直角三角形:半徑,圓心到直線的距離,弦長(zhǎng)具有的關(guān)系,這也是求弦長(zhǎng)最常用的方法.2.利用交點(diǎn)坐標(biāo):若直線與圓的交點(diǎn)坐標(biāo)易求出,求出交點(diǎn)坐標(biāo)后,直接用兩點(diǎn)間的距離公式計(jì)算弦長(zhǎng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 1.1 國(guó)家是什么(導(dǎo)學(xué)案) 高二政治 (統(tǒng)編版選擇性必修1)
- 印刷機(jī)械行業(yè)智能化發(fā)展的市場(chǎng)機(jī)遇分析考核試卷
- 2025年銷售傭金合同范本與業(yè)績(jī)激勵(lì)方案3篇
- 2025版木工行業(yè)培訓(xùn)與認(rèn)證服務(wù)合同范本4篇
- 2025年商業(yè)委托銷售協(xié)議
- 2025年合法住房公租房協(xié)議
- 二零二五年度駕校品牌推廣與市場(chǎng)拓展合作合同2篇
- 2025年度個(gè)人二手車轉(zhuǎn)讓及二手車增值服務(wù)合同3篇
- 二零二五年度林業(yè)苗木繁育基地承包合同4篇
- 二零二五年度集體產(chǎn)權(quán)房屋買賣合同樣本(含房屋產(chǎn)權(quán)調(diào)查及核實(shí)要求)
- 《醫(yī)院財(cái)務(wù)分析報(bào)告》課件
- 2025老年公寓合同管理制度
- 2024-2025學(xué)年人教版數(shù)學(xué)六年級(jí)上冊(cè) 期末綜合卷(含答案)
- 2024中國(guó)汽車后市場(chǎng)年度發(fā)展報(bào)告
- 感染性腹瀉的護(hù)理查房
- 天津市部分區(qū)2023-2024學(xué)年高二上學(xué)期期末考試 物理 含解析
- 《人工智能基礎(chǔ)》全套英語(yǔ)教學(xué)課件(共7章)
- 廢鐵收購(gòu)廠管理制度
- 物品賠償單范本
- 《水和廢水監(jiān)測(cè)》課件
- 滬教版六年級(jí)數(shù)學(xué)下冊(cè)課件【全冊(cè)】
評(píng)論
0/150
提交評(píng)論