版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
ArtofthepossibleartificialIntelligence&Blockchain
Contents
03Introduction
04ArtificialIntelligence:Anexplanation
05SymbolicAI-1955
05MachineLearning-1995
08DeepLearning-2011
10AIinFinance
11PersonalisedFinancialPlanning
12FraudDetetctionandAnti-Money
Laundering
13ProcessAutomationandEfficiency
14RisksofAI
14Howdidyoudecidethat?
14Ethics,ResponsibilityandStewardship
15Whataboutmydata?
17Blockchain:AnExplanation
17BriefHistory
Sowhatisit?
That’sgreat,buthowdoesitwork?
Sowhereisallthemoney?
19Don’tforgetaboutDLT
BlockchaininFinance
RisksofBlockchain
TheOpportunityforNHSFinance
Blockchain
23E-Invoicing
AI
24DrivingincreasinglyefficientNHSfinancesystemsandprocess
24PLICS&predictiveandprescriptiveanalysis
25Reportingtofinanceandnon-finance
26ClosingStatement
27Resources
28Bibliography
Introduction
ARTOFTHEPOSSIBLEARTIFICIALINTELLIGENCE&BLOCKCHAIN|3
Fintechisthefinancialtechnologyandinnovationthataimstocompetewithtraditionalfinancialmethodsinthedeliveryoffinancialservices.Itisanemergingindustrythatusestechnologytoimproveactivitiesinfinance.ThereisasignificantamountofvariationintheperformanceandefficiencyofexistingNationalHealthService(NHS)Financesystemsandprocesses,andthecombinationofalargeandhighlyskilledfinancialworkforcewithstate-of-the-artemergingtechnologiespresentsNHSFinancewithanopportunitytoaddresssomeofthesedisparities.
Thefirstchallengehoweverissimplytounderstandsomeofthesetechnologies.Thisbriefingwillevolvetocontainmanytechnologiesastheyemergebutstartsoutwithtwocomplextechnologieswhicharenotwidelyunderstood.However,overthenextdecadeifimplementedsecurely,safelyandcorrectly,theymayofferimprovementstotheNHSandgiveNHSFinanceanopportunitytodirectlycontributetothedeliveryofbettervaluehealthandcareforentirepatientpathways.
ThisbriefingaimstoprovideashorthistoryandabasiclevelofunderstandingofArtificialIntelligenceandBlockchaintechnologies.Itwillalsoidentifyexistingimplementationsinafinancesettingandproposeareasofopportunity,sotogetherwecanbegintothinkaboutwhatplacethesetechnologiescouldhaveinthefutureofNHSFinance.
4|ARTOFTHEPOSSIBLEARTIFICIALINTELLIGENCE&BLOCKCHAIN
ArtificialIntelligence:Anexplanation
In1950AlanMathisonTuringpublishedaground-breakingpaperwhichposedthequestion“Canmachinesthink?”1
FiveyearslaterProfessorJohnMcCarthycoinedtheterm“artificialintelligence”(AI)whichoriginallyproposeda
2-monthstudytoinvestigatetheassumptionthat:
“Everyaspectoflearningoranyotherfeatureofintelligencecaninprinciplebesopreciselydescribedthatamachinecanbemadetosimulateit.Anattemptwillbemadetofindhowtomakemachinesuselanguage,formabstractionsandconcepts,solvekindsofproblemsnowreservedforhumans,andimprovethemselves.”2
62yearsonfromMcCarthy’s(largelytheoretical)study,ProfessorDameWendyHallandJér?mePesentiina2017papercommissionedbytheUKgovernmentstatesthat“AIcouldcontribute£630BilliontotheUKeconomyby2035”3.
InthisbriefingwewilllookathowAIhasevolvedoverthepastsixdecades,whattoday’sArtificialIntelligenceimplementationslooklike,andtheopportunitiesAIcouldpresenttoNHSFinance.
ComputingMachineryandIntelligence,1950
AProposalfortheDartmouthSummerResearchProjectonArtificialIntelligence,1955
GrowingtheartificialintelligenceindustryintheUK.,2017
ARTOFTHEPOSSIBLEARTIFICIALINTELLIGENCE&BLOCKCHAIN|5
Symbolicai-1955
Duetoalackofavailablecomputingpowerandelectronicdata,in1955AIwasprimarilymathematicalandthereforesufferedfromanimmediatelackofinitialinvestment.Forthefirst15yearsthetechnologyexperienceditsfirstAI
Winteruntilthe1980swhentheUS,Japan,andtheUKbegancompetingheavilyinAIinvestmentforthefirsttime.
AIWINTER
AIwinterisaquietperiodforartificialintelligenceresearchanddevelopment.Overtheyears,fundingforAIinitiativeshasgonethroughanumberofactiveandinactivecycles.Thelabel“winter”isusedtodescribedormantperiodswhencustomerinterestinartificialintelligencedeclines.
ThissawthefirstworkingimplementationsofearlyAIintheformof‘ExpertSystems’4whichwereusedtovaryingdegreesofsuccessforintegratedpersonalfinancialplanningandmorenotably‘programtrading’onthestockmarket.Thelatter
wasthoughttohavecontributedinparttothetroublesomemarketswingsofthelate1980sand‘BlackMonday’whichsawa508-pointdropintheDowJonesIndustrialAverage(DJIA)whichwasthelargestone-daydropintheindex’shistory.Thoughthesesystemstendedtobecomemoreaccurateasmoreruleswereadded,thesesystemswereexpensivetoscale,labourintensive,andrequiredsignificantupkeep.Theyalsooftenrespondedpoorlytocomplexsituationswheretheformalrulesuponwhichtheygeneratedtheirinferenceswerenotflexibleenoughandlackedsafeguardsorappropriateexceptionhandling.5
AtthistimepersonalcomputerswereintroducedbyIBMandAppleandthemuchhardertomaintain‘ExpertSystems’felloutoffavour.Fundingdriedupandthecompaniesthemselvesbegantodefaultontheirpromises.Thisledto
asecondAIwinteruntil1993whenTheFinCENArtificialIntelligenceSystem(FAIS)wassuccessfullyimplementedandinitsfirsttwoyearsreviewedover200,000transactionsaweekidentifyingmoneylaunderingbreachesworthapproximately$1BillionUSD.6Thiswasoneofthefirst
consistent,scaledandfinanciallysuccessfuldemonstrationsofAIandledthetechnologyoutofitssecondwinterandintoanewageofpracticaltechnologicaldevelopment.
Machinelearning-1995
Machinelearning(ML)wasatermcoinedbyArthurSamuelofIBMin19597.MLisasubsetofAIandreferstothedevelopmentofdigitalsystemsthatimprovetheirownperformanceonagiventaskovertimethroughexperience.
MListhemostwidelyusedformofAI,andhascontributedtoinnovationslikeself-drivingcarsanddatamining.
MLexperiencedsignificantpracticaladvancesinthe90sdueto:
improvementstoalgorithms
increasesinfunding
hugegrowthintheamountofdatacreatedandstoredbydigitalsystems
theabilitytoaccessthisdataviatheinternet
increasedaccesstospecialistcomputinghardwaresuchasGraphicalProcessingUnits(GPUs)andcloudcomputing.
PROTRADER:AHuman-aidedLearningSystemfor,1987
Explainingdecisionsmadewithartificialintelligence,n.d.
ArtificialIntelligenceinFinance,2019
SomeStudiesinMachineLearningusingthegameofcheckers,1959
MLhasmanymovingpartssoforthepurposesofthisbriefingwearejustgoingtolookatthelearningapproachesandthelearningprocess.Atthisjunctureitisimportanttostatethedifferencebetweenanalgorithmandamodel.
Analgorithmisaformulaorsetofrules(orprocedure,processes,orinstructions)forsolvingaproblemorforperformingatask.InArtificialIntelligence,thealgorithmtellsthemachinehowtofindanswerstoaquestionorsolutionstoaproblem.8
Amodelistheoutputofamachinelearningalgorithmwhichhasbeenrunondata.Amodelrepresentswhatwaslearnedbyanalgorithm.9
LearningApproaches
Learningapproachesarethedifferentwaysinwhichanalgorithminteractswithanewdatasettolearnfromit.Therearemanylearningapproaches,butforthepurposesofthisbriefingwewillcoverthethreemainones:
SupervisedLearningisataskwhichallowsanAImodeltolearnfromlabelleddata.
Inhealthcare,scansthatarelabelledashealthyandcancerousbeingusedtotrainamodelsothatunlabelledimagescanbeidentifiedashealthyorcancerous.
Unsupervisedlearningisatypeofmachinelearningalgorithmusedtodrawinterpretationsfromsetsofdatawithoutanylabelledresponses.Itcanbeusedtofindpatternsorclusterswithinthedata.
Anexampleofunsupervisedlearningisclustering.Sortingpeopleintogroupsbasedonfeaturesbutnotlabellingthegroups.
ReinforcementLearningisatypeofdynamicprogrammingthattrainsalgorithmsusingasystemofrewardandpunishment.Thealgorithmisexposedtoatotalrandomandnewdataset,anditautomaticallyfindspatternsandrelationshipsinsideofthatdataset.Themodelisrewardedwhenitfindsa‘desired’relationship,butitisalsopunishedwhenitfindsan‘undesired’relationship.8
Itissimilartothestructureofhowweplayavideogame,inwhichthecharacter(algorithm)engagesinaseriesoftrials(challenges)togetthehighestscorepossible(reward).”
Thealgorithmlearnswithoutinterventionfromahumanbymaximisingitsrewardandminimisingitspenalty.Atfirstthecharactermaymoverandomly,buttheinformationfrompreviousrunsisstoredandusedtoimprovefutureattempts.
6|ARTOFTHEPOSSIBLEARTIFICIALINTELLIGENCE&BLOCKCHAIN
Glossary-ArtificialIntelligenceinMedicalImaging,2019
DifferenceBetweenAlgorithmandModelinMachineLearning,2020
ARTOFTHEPOSSIBLEARTIFICIALINTELLIGENCE&BLOCKCHAIN|7
EXAMPLESOFALGORITHMS
Logisticregressionisakindofstatisticalanalysisthatisusedtopredicttheoutcomeofadependentvariablebasedonpriorobservations.Forexample,analgorithmcould
determinethewinnerofapresidentialelectionbasedonpastelectionresultsandeconomicdata.
Linearregressionisakindofstatisticalanalysisthatattemptstoshowarelationshipbetweentwovariables.Linearregressionlooksatvariousdatapointsandplotsatrendline.Linearregressioncancreateapredictivemodelonseeminglyrandomdataandhighlighttrends.
Adecisiontreeusesatree-likegraphormodelasastructuretoperformdecisionanalysis.Ituseseachnodetorepresentatestonanattribute,eachbranchtorepresenttheoutcomeofthetest,
RandomForestsareensemblelearningmethodsfordataclassificationandregression.Theyconstructamultitudeofdecisiontreesduringthetrainingandoutputtheclassthatisthemodeoftheclasses(classification)ormeanprediction(regression)oftheindividualtrees.
Learningprocess
WhicheverlearningapproachisusedeachMLsystemcomprisesthefollowingcomponentswhichformthelearningprocess:
Aproblemincludesdefinitionsandformulationsontheproblemscharacteristics
Datasourceincludesdefinitionsandformulationsonthedata’scharacteristics
Algorithmselection(Seeexamplesofalgorithms)8
Optimisationmethodsrangesignificantlyandinclude,FirstOrder,Highorder,Derivativefreeandpreconditioningoptimisationmethods–Seethisreferenceforexamples10
ValidationandverificationValidationischeckingthatthesystemmeetstheusersneeds(Arewebuildingtherightsystem)andverificationchecksthatweachievesthespecification(arewebuildingtheproductright.
ThisexplanationofMachineLearningmayappeartobeabittooinvolvedbutunderstandingthebuildingblockscanhelpustobetterunderstandtheopportunitiesthatexistbeyondcomparativelymechanicalRoboticProcessAutomation(RPA)implementations,whichwithinthenext5yearscouldbecomecommonplaceinNHSFinancesystemsandprocesses.
MLdevelopmentcontinuestodayandisstillthemostwidelyusedsubsetofAI,butaswemovefurtheralongourtimelinetowardstheendof2010furtherimprovementsincomputingpoweranddatastorageleadtothepracticalemergenceofanothersubsetofAI.
ASurveyofOptimizationMethodsfrom,2019
8|ARTOFTHEPOSSIBLEARTIFICIALINTELLIGENCE&BLOCKCHAIN
DeepLearning-2011
ForalongtimeMLrequiredagooddealofmanualfeatureengineering,i.e.lookingatdatatoextractfeatureswhichwereimportantandmeaningfulforaproblem.Oncethesefeatureswereidentifiedasimplemodelcouldbeused.
Byincreasingthecomplexityofthemodels,throughtheintroductionofmanymorelayers,itwasfoundthatthese‘deep’modelscouldbetaughttolearnthesefeatureswithouthumaninteraction,reducinghumaneffortandhencereducedcost.
Inadditionitwasfoundthatthesedeepmodelswereabletoidentifycomplexfeatureswhichwerenoteasilyfoundbyhumaninspection.
Itwasthiscombinationofreducedcostandincreasedperformancethatleadtotheriseofdeeplearning.
Deeplearning(DL)isviewedasabranchofMLandassuch,isalsoregardedasasubsetofAI.
By2011,computerprocessingpowerandstorageofbigdataweregrowingataformidablerateandthiscombinationbroughtanewageofsupercomputerwhichmeantthatpracticalscaledworkonArtificialNeuralNetworks(ANNs)becamepossible.
TheconceptoftheseNeuralNetworkswasfirstauthoredbyMcCulloch&Pitts11ina1943paperwhichconsideredthehumanbrain’sbiologicalneuralsystemasanappropriateandefficientprocessorbyusinglayersof‘neurons’toperformdifferentlogicfunctionssimultaneously.Thatistosaythatourbiologicalneuralnetwork(thehumanbrain)makesconnections(firingneurons)basedonourperceptionsandoutsidestimulus.
ANNstrytomakecomputersmimicthecapabilitiesofthehumanbraininthewayitprocessesinformation.ANNsaredesignedtoreplicatethefunctionsoftheneuralstructureofthehumanbrain.Theyareadaptive,flexible,adjustingandlearningwithnumerousanddiverseexternaland
internalstimulus.12
‘deep’modelscouldbetaughttolearnthesefeatureswithouthumaninteraction
Alogicalcalculusoftheideasimmanentinnervousactivity,1943
NeuralNetworks,ArtificialIntelligenceandtheComputationalBrain,2020
ARTOFTHEPOSSIBLEARTIFICIALINTELLIGENCE&BLOCKCHAIN|9
NeuralWhat?!Saythatagainplease
Anextremelyoversimplifiedexamplecouldbethepainweexperiencefromgettingburnedbyfire.Whenthishappensforthefirsttime,aconnectionismadeinyourbrainthatidentifiesthesensoryinformationknownasfire(flames,smellofsmoke,heat)andrelatesitwithpain.Thisishowwelearn,ataveryyoungage,tonotgetburned.Throughthissameneuralnetwork,wecandoalotofgenerallearninglike“icecreamtastesgood”.Theselessonsarenotalwayscorrect(thereisbadicecream!),butassumptionsarecorrectedthroughmoreexperiences,whichallowshumanstheprivilegeofadaptivelearningandtobecomegeneralists.
PracticallyDLisastatisticaltechniqueforfindingpatternsinlargeamountsofdata.Generallyspeaking,theblueprintsofaDLalgorithmareANNs.JustlikeinMLtheseDLalgorithmscanbeusedwiththesupervised,unsupervised,orreinforcementlearningapproachesmentionedearlier.
Althoughdeeplearningsolutionsdoproduceimpressiveresults,theyarenotabletorivaltheintricatecomplexityofthehumanbrain.
ThereareunsurprisinglymanymoreareasofAI,MLandDLsuchas;LongShortTermMemoryNetworks(LSTM),
ConvolutionalNeuralNetworks(CNN),LowShotLearning(LSL)etc.ButthisbriefingseekstoprovideaprimitiveunderstandingofAI.
Ifyouarekeenforadeeperdive,pleasehavealookattheBibliography.Alternatively,ifyoupreferamoreaccessibledemonstrationofaDeepLearningNeuralNetworkyoucanwatchtheaward-winningdocumentaryAlphaGoonYouTube.
ALPHAGO
AlphaGoisthefirstcomputerprogramthatdefeatedaprofessionalplayerontheboardgameGoinOctober2015.LaterinOctober2017,AlphaGo’steamreleaseditsnewversionnamedAlphaGoZerowhichisstrongerthananyprevioushuman-championdefeatingversions.Goisplayedon19by19boardwhichallowsfor10171possiblelayouts(chess1050configurations).Itisestimatedthatthereare1080atomsintheuniverse.
ClickheretowatchtheAlphaGodocumentary
10|ARTOFTHEPOSSIBLEARTIFICIALINTELLIGENCE&BLOCKCHAIN
Aiinfinance
TodaytheUKgovernmentdefinesAIas:
“Theuseofdigitaltechnologytocreatesystemscapableofperformingtaskscommonlythoughttorequireintelligence.AIisconstantlyevolving,butgenerallyit:
involvesmachinesusingstatisticstofindpatternsinlargeamountsofdata
istheabilitytoperformrepetitivetaskswithdatawithouttheneedforconstanthumanguidance”13
InresponsetothepaperbyHallandPesenti3mentionedatthebeginningofthisbriefingthegovernmentpublishedanIndustrialStrategyandplacedArtificialIntelligenceandDataasoneof4GrandChallenges,whichisnowsupportedbythe
£950mAISectorDeal.14
ThegovernmentalsosetupthreenewbodiestosupporttheuseofAI:
AICouncilwhichisanexpertcommitteeprovidinghigh-levelleadershipindeliveringtheAISectorDeal.
OfficeforAIwhichworkswithindustry,academiaandthethirdsectortocoordinateandoverseetheimplementationoftheUK’sAIstrategy
CentreforDataEthicsandInnovationwhichidentifiesthemeasuresneededtomakesurethedevelopmentofAIissafe,ethicalandinnovative.
InDecember2018afollow-uppaperForgingourFuture15
statedthatthefirstmissionoftheGrandChallengewasto:
“Usedata,ArtificialIntelligenceandinnovationtotransformtheprevention,earlydiagnosisandtreatmentofchronicdiseasesby2030.”
Inthefinancialservicesindustry,existingAIapplicationsincludealgorithmictrading,portfoliocompositionandoptimisation,modelvalidation,backtesting,robo-advising,virtualcustomerassistants,marketimpactanalysis,regulatorycompliance,andstresstesting.
IntheiroriginalpaperHallandPesenti3identifiedthreeareasoffinanceintheUKwhereAIhasgreatpotential:
personalisedfinancialplanning
frauddetectionandanti-moneylaundering
processautomationandefficiency
Aguidetousingartificialintelligenceinthepublicsector,2019
IndustrialStrategy,BuildingBritainfitforthefuture,2017
Government,ForgingourFuture:IndustrialStrategy-thestorysofar,2018
ARTOFTHEPOSSIBLEARTIFICIALINTELLIGENCE&BLOCKCHAIN|11
INTERNETOFTHINGS(IOT)
TheIOTistheinterconnectionviatheinternetofcomputingdevicesembeddedineverydayobjects,enablingthemtosendandreceivedata.Examplesof‘things’thatare‘smart’includeAmazonsRing
doorbell,SamsungsmartFridges,theiKettleorPhillips
Huesmartlights
Personalisedfinancialplanning
Whilehumanfinancialadviceiscostlyandtime-consuming,AIdevelopmentssuchasrobo-advicehavemadeitpossibletodevelopcustomisedinvestmentsolutionsformostofitscustomers,untilrecentlythisbespokefinancialadvicewasreservedforaverysmallminorityofwealthyindividuals.
Inthebankingsector,AIpowersthesmartchatbotsthatprovideclientswithself-helpsolutionswhilereducingthecall-centres’workload.Anumberofappsofferpersonalisedfinancialadviceandhelpindividualsachievetheirfinancialgoals,bytrackingincome,essentialrecurringexpenses,andspendinghabitsandconstantlyadapttocomeupwithanoptimisedpersonalplanforeachuser.
ThebiggestUSbanks,havelaunchedmobilebankingappsthatprovideclientswithreminderstopaybills,plantheirexpensesandinteractwiththeirbankinaneasierandmorestreamlinedway,fromgettinginformationto
completingtransactions.16
Voice-controlledvirtualassistantspoweredbytheInternetofThings(IOT)deviceslikeAmazon’sAlexaarealsogainingtractionfast.Thepresenceofself-educatingIOTdeviceswillcontinuetoscale,anduserswillbeabletocheckbalances,
schedulepaymentsandreceivefinancialadviceinthecomfortoftheirownhomewithoutleavingthesofaorpickingup
theirphone.
“Usedata,ArtificialIntelligenceandinnovationtotransform
theprevention,earlydiagnosisandtreatmentofchronicdiseasesby2030.”
TheGrowingImpactofAIinFinancialServices,2019
12|ARTOFTHEPOSSIBLEARTIFICIALINTELLIGENCE&BLOCKCHAIN
LEGALPROFESSIONALPRIVILEGE(LPP)ROBOT
Legalprofessionalprivilegeprotectsallcommunicationsbetweenaprofessionallegaladviserandtheadvisor’sclientsfrombeingdisclosedwithoutthepermissionoftheclient.TheRobotreducesthetimetakeninsuchreviewsbyover80%andgreatlyreducesthelevelofmanpowerneededtoconductthetask.Accuracylevelsarealsoimproved.
Frauddetectionandanti-moneylaundering
FrauddetectionwasoneoftheearliestsuccessfulimplementationsofAIbackin1993withtheFinCENArtificialIntelligencesystemmentionedearlier.InthedecadessincethefraudandmoneylaunderingsectorhasseenoneofthemostsignificantincreasesinAIadoption.
InatypicalyeartheUKSeriousFraudOffice(SFO)processesover100milliondocumentsinfraudandcorruptioncases.
TheSFOusedtheRAVNroboticsystemwhichisreferredtoasaLegalProfessionalPrivilege(LPP)robot.RAVNsiftsdocumentsinto“privileged”versus“non-privileged”piles,
indexesandcompilessummaries.IntheRolls-Roycebribery2017case,RAVNprocessed30milliondocumentsatarateofupto600,000perday(comparedwithateamoflawyersthatwouldhaveprocessed3,000perday).TheSFOisalsoconsideringotheradvancedMLtechniquesinotheraspectsofitsoperations.6
ARTOFTHEPOSSIBLEARTIFICIALINTELLIGENCE&BLOCKCHAIN|13
Processautomationandefficiency
RoboticProcessAutomation(RPA)17isgenerallyaprecursortotheintroductionofML.Humanerrorandalackofstandardisationinlegacyprocessesisaconsistentissuewhenmanagingriskandimprovingefficiency.
Alargeglobalbank18wantedtoautomateitsUKsalesquality(SQ)processtoimprove3keyareas:
compliancerisk-faultsanderrorsinuncheckedcases
goinguncorrected
accuracyrisk-inconsistencyandpotentialoversightsduetohumaninvolvement
slowprocesses-time-consumingreviewsanddelayedfeedbackloop
ROBOTICPROCESSAUTOMATION(RPA)
RPAisanapplicationoftechnology,governedbybusinesslogicandstructuredinputs,aimedatautomatingbusinessprocesses.UsingRPAtools,ateamcanconfiguresoftware,ora“robot,”tocaptureandinterpretdifferentapplicationsforprocessingatransaction,manipulatingdata,triggeringresponsesandcommunicatingwithotherdigitalsystems
TheSQteamisresponsibleforreviewingthesaleoffinancialproductsforregulatorycompliance.Currentlytheteamisrequiredtocheckasampleof10%to15%ofcompletedsales.Ateamof120humanreviewershadtolookatmorethan10differentdatasourcesand180datapointstofindandextract
theinformationtheyneededtocompleteanaudit.Eachreviewtookaround4hours.
ThebankworkedwithanAIserviceprovidertodevelopsoftwaretoautomatethisinternalcomplianceprocess.Thestructureddata,whichmadeup20%ofthetotaldata,wasfeddirectlyintothenewsystem.Theother80%wasunstructured.ThisincludedlettersandmemosinPDF,aswellaspayslipsandbankstatementssavedasimages.Atleast70%ofthechecksinvolvedintheSQprocessrequiredunstructureddata.
TheserviceproviderthendevelopedAImodelstoextracttherequireddata,usingadifferentmodelforeachdocumentcategory.Aftertesting,theAImodelscanextracttherequireddatafromunstructureddatasourcesmuchfasterandmoreaccuratelythanthepreviousmanualprocess.
UsingAIhelpedthebankbyproviding:
greatercompliance-theteamcanreview100%ofcases,insteadofjustasampleset
improvedaccuracy-automatedchecksusingAImodelsachievecloseto100%accuracy
fasterprocess-eliminationofthebacklogofchecksandmovingchecksclosertoreal-time
moretimeforteammemberstofocusonmakingimprovements
WhatisRPA?Arevolutioninbusinessprocessautomation,2018
HowaUK-basedbankusedAItoincreaseoperationalefficiency,2019
14|ARTOFTHEPOSSIBLEARTIFICIALINTELLIGENCE&BLOCKCHAIN
Risksofai
19ArtificialIntelligenceandPublicStandards,2020
Howdidyoudecidethat?
ThereareasexpectedsomedrawbackstoMLandDLmethods.Oneofthemostsignificantisthatifquestioned,theprocessbywhichAIsgothroughtoarriveattheirconclusionsisgenerallyunclearandknownastheblackboxcriticism.
Withneuralnetworks,forexamplewecanseetheinputsandtheoutputs,butthelayersofvariablesusedtogetfrominputtooutputarefairlyopaque.Insomescenariosthisisacriticalissueifwearetryingtopreventuncheckeddiscriminationorbiasinlendingmodelsforexample.
Unrecognisedbiascanbeasymptomofthemodelandoptimisationalgorithmnotbeingcalibratedcorrectlyorbeinggiventherightparameterstoscale,hencethecriticalimportanceoftestingandvalidationbeforerelease.
Askinghumanstotrustanoutputwheretheprocessitselfcannotbeexplainedorprovidedonrequesthasunquestionablydelayedadoptionofthetechnology.
However,asmoreAIsprovetheaccuracyoftheiranalysisandpredictions(withoutexplainingtheirprocess)wemay,afterenoughreliableoutputsfindourselvestrustingcertainAIsquickerthanexpected.
Ethics,responsibilityandstewardship
Aswehaveseenfromthe1980sexpertsystems,poorimplementationsofAIcanleadtodisastrousresults.TheCentreforDataEthicsandInnovationstatethat“Humansmustbeultimatelyresponsiblefordecisionsmadebyanysystem...Goodgovernancewillrequireforeachusecase,aspecificunderstandingoftheappropriatedivision
ofresponsibilities.”19
TheCommitteeonStandardsinPublicLifeinanimportant2020paperentitledArtificialIntelligenceandPublicStandards19hasidentifiedfiveareasofgovernancenecessaryforupholdingpublicstandardsinthiscontext:setting
responsibility;monitoringandevaluation;internalandexternaloversight;appealandredress;andtrainingandeducation.
WiththeamountofautomateddataanalysisandinterpretationinvolvedinAIimplementations,publicbodiesaboveallhaveanobligationtoensuretheyapplyandcanevidencegoodpracticeandthehigheststandardswhenembarkingonthisundeniablyvaluablebutunchartedjourney.
ARTOFTHEPOSSIBLEARTIFICIALINTELLIGENCE&BLOCKCHAIN|15
|
Whataboutmydata?
Anothersignificantriskparticularlyinthepublicsectorismanagingaccesstosensitivedatawhich,generallyspeaking,hastwokeyaspects:
providingtrustandconfidence
reducingtransactioncoststosustainablelevels.
Trustandconfidenceintheuseofsensitivedata
IntheNHSdataneedstobeprotected,forreasonsofprivacy,securityandconfidentiality.NHSdata-holdersneedtrustandassurancetobeconfidentinbeingabletosharedatawith
AIdevelopers.
TheInformationCommissioner’sOff
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版塔吊司機(jī)與司索工安全操作雇傭協(xié)議書10篇
- 二零二四年度小程序與在線教育平臺(tái)合作開發(fā)合同3篇
- 2025房屋租賃合同以及注意事項(xiàng)
- 二零二四年度醫(yī)藥產(chǎn)品研發(fā)與臨床試驗(yàn)合同
- 鋼框架結(jié)構(gòu)施工方案
- 2025版平方家具買賣合同范本(含運(yùn)輸安裝)3篇
- 《盛明雜劇》評點(diǎn)研究
- 中小企業(yè)大數(shù)據(jù)能力、知識(shí)積累對商業(yè)模式創(chuàng)新的影響研究
- 氧化石墨烯基材料的制備及其對U(Ⅵ)吸附行為的研究
- 二零二五版木屑生物質(zhì)發(fā)電項(xiàng)目投資合同4篇
- 《色彩基礎(chǔ)》課程標(biāo)準(zhǔn)
- 人力資源 -人效評估指導(dǎo)手冊
- 大疆80分鐘在線測評題
- 2023年成都市青白江區(qū)村(社區(qū))“兩委”后備人才考試真題
- 2024中考復(fù)習(xí)必背初中英語單詞詞匯表(蘇教譯林版)
- 《現(xiàn)代根管治療術(shù)》課件
- 肩袖損傷的護(hù)理查房課件
- 2023屆北京市順義區(qū)高三二模數(shù)學(xué)試卷
- 公司差旅費(fèi)報(bào)銷單
- 2021年上海市楊浦區(qū)初三一模語文試卷及參考答案(精校word打印版)
- 八年級上冊英語完形填空、閱讀理解100題含參考答案
評論
0/150
提交評論